Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 130(26): 8414-25, 2008 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-18528992

RESUMO

Synthetic methods have been developed to generate the complete series of resonance-stabilized heterocyclic thia/selenazyl radicals 1a-4a. X-ray crystallographic studies confirm that all four radicals are isostructural, belonging to the tetragonal space group P42(1)m. The crystal structures consist of slipped pi-stack arrays of undimerized radicals packed about 4 centers running along the z direction, an arrangement which gives rise to a complex lattice-wide network of close intermolecular E2---E2' contacts. Variable temperature conductivity (sigma) measurements reveal an increase in conductivity with increasing selenium content, particularly so when selenium occupies the E2 position, with sigma(300 K) reaching a maximum (for E1 = E2 = Se) of 3.0 x 10(-4) S cm(-1). Thermal activation energies E(act) follow a similar profile, decreasing with increasing selenium content along the series 1a (0.43 eV), 3a (0.31 eV), 2a (0.27 eV), 4a (0.19 eV). Variable temperature magnetic susceptibility measurements indicate that all four radicals exhibit S = 1/2 Curie-Weiss behavior over the temperature range 20-300 K. At lower temperatures, the three selenium-based radicals display magnetic ordering. Radical 3a, with selenium positioned at the E1 site, undergoes a phase transition at 14 K to a weakly spin-canted (phi = 0.010 degrees) antiferromagnetic state. By contrast, radicals 2a and 4a, which both possess selenium in the E2 position, order ferromagnetically, with Curie temperatures of T(c) = 12.8 and 17.0 K, respectively. The coercive fields H(c) at 2 K of 2a (250 Oe) and 4a (1370 Oe) are much larger than those seen in conventional light atom organic ferromagnets. The transport properties of the entire series 1a-4a are discussed in the light of Extended Hückel Theory band structure calculations.

2.
J Am Chem Soc ; 130(44): 14791-801, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-18847197

RESUMO

A series of five isostructural bisthiaselenazolyl radicals 2 have been prepared and characterized by X-ray crystallography. The crystal structures, all belonging to the tetragonal space group P42(1)m, consist of slipped pi-stack arrays of undimerized radicals packed about 4 centers running along the z-direction, an arrangement which gives rise to a complex lattice-wide network of close intermolecular Se---Se' contacts. Variations in R1 (Et, Pr, CH2CF3) with R2 = Cl lead to significant changes in the degree of slippage of the pi-stacks and hence the proximity of the Se---Se' interactions. By contrast, variations in R2 (Cl, Br, Me) with R1 = Et induce very little change in either the degree of slippage or the intermolecular contacts. Variable-temperature conductivity (sigma) measurements show relatively constant values for the conductivity sigma(300 K) (10(-5)-10(-4) S cm(-1)) and thermal activation energy E(act) (0.27-0.31 eV). Variable-temperature magnetic susceptibility measurements indicate that radicals 2b and 2c (R1 = Pr, CH2CF3; R2 = Cl) behave as weakly antiferromagnetically coupled Curie-Weiss paramagnets, but in 2a, 2d and 2e (R1 = Et; R2 = Cl, Me, Br) ferromagnetic ordering is observed, with T(c) values of 12.8 (R2 = Cl), 13.6 (R2 = Me), and 14.1 K (R2 = Br). The origin of the dramatically different magnetic behavior across the series has been explored in terms of a direct through-space mechanism by means of DFT calculations on individual pairwise exchange energies. These indicate that antiferromagnetic exchange between radicals along the pi-stacks increases with pi-stack slippage.

3.
Org Lett ; 8(11): 2333-6, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16706519

RESUMO

[reaction: see text] The synthesis of a molecular wire bearing an anthraquinone core and thioacetyl end groups for gold electrode binding is described. A model anthraquinone system, substituted with tert-butylthio groups, can be reversibly switched electrochemically from cross conjugated (low conductance "off") to linear conjugated (high conductance "on") via two-electron reduction/oxidation reactions. This feature holds promise for the anthraquinone-based wires to be used as redox-controlled switches in molecular electronic devices.

4.
J Phys Chem A ; 109(49): 11275-84, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16331912

RESUMO

A series of alpha,omega-bis(mesitylthio)oligothiophenes of various chain lengths and with different side substitution patterns have been studied in their oxidized states by means of electron absorption and Raman spectroscopies in combination with theory in the framework of the density functional theory. Upon chemical oxidation, stable radical cations, dications, and even radical trications are generated. Longer chain lengths better stabilize higher oxidation states. The tetramer can be easily converted to the dication, and a trication can be obtained for the ethylenedioxy derivative. The alpha,omega-sulfur atoms are actively involved in the formation of the charged species and exert a favorable tuning of their electronic structure. Raman spectra provide experimental evidence of the attainment of quinoidal structures within the conjugated path, initially heteroaromatic, with different extension as a function of the p-doping level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA