RESUMO
Bariatric surgery is the most effective treatment for obesity and its comorbidities. However, our understanding of the molecular mechanisms behind its beneficial effects is limited. Extracellular vesicles (EVs) comprise an important mode of intercellular communication. They carry nucleic acids, hormones, and signaling molecules and regulate multiple processes. Our aim was to test the role of EVs in the effects of vertical sleeve gastrectomy (VSG) using a mouse model. Small intestinal EVs were obtained from the mice that underwent VSG or control surgery and were on chow or high-fat diet or diet-restricted, and then they were subjected to the proteomic analysis. Enteroid and bacterial cultures were treated with EVs to evaluate their survival effect. A mouse cohort received intraduodenal administration of EVs from VSG or Sham mice for 10 days. Body weight, glucose metabolism, and intestinal morphology were evaluated. EVs were enriched in the intestinal lumen and mucus of VSG compared with Sham mice. Protein composition of VSG and Sham-derived EVs was highly distinct. When introduced into culture, VSG EVs decreased survival of intestinal enteroids and, conversely, promoted proliferation of bacteria. Mice administered with EVs obtained from VSG and Sham groups did not show differences in body weight, food intake, or glucose metabolism. Intestinal morphology was altered, as VSG EVs caused reduction of ileal villi length and decreased epithelial proliferation in the jejunum and ileum. VSG causes remodeling of intestinal EVs, which results in unique protein composition. VSG-derived EVs exhibit cytotoxic effects on epithelial cells and reduce proliferation of intestinal progenitor cells in mice.NEW & NOTEWORTHY This is the first study that investigates the impact of bariatric surgery on protein composition of intestinal extracellular vesicles. Extracellular vesicle composition is greatly altered after vertical sleeve gastrectomy and may potentially modulate various signaling pathways. In our study, extracellular vesicles from vertical sleeve gastrectomy-treated mice promote bacterial proliferation but exhibit cytotoxic effect on epithelial cells and reduce proliferation of intestinal progenitor cells in mice.
Assuntos
Vesículas Extracelulares/fisiologia , Gastrectomia/métodos , Mucosa Intestinal/fisiologia , Animais , Cirurgia Bariátrica , Glicemia , Proliferação de Células , Dieta Hiperlipídica , Células Epiteliais/fisiologia , Comportamento Alimentar , Intolerância à Glucose , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Transdução de Sinais , Redução de PesoRESUMO
ABSTRACT: To investigate the effect of high fructose diet on ultrastructure and content of hepatic mitochondria, we randomized 6-8âweeks old male C57Bl6/J mice to ad lib chow or high-fat-high-fructose (HF2) diet for 32âweeks. HF2-fed mice gained more weight, had higher plasma alanine aminotransferase, and fasting glucose levels and increased hepatic triglyceride content at all time points compared to chow-fed mice. HF2-fed mice had lower mitochondrial to nuclear DNA ratio compared to chow-fed mice. HF2-fed mice had lower average mitochondrial surface area and the number of mitochondria compared to chow-fed mice. HF2-fed mice had higher expression of the hepatic endoplasmic reticulum stress marker Chop, compared to chow-fed mice. A diet high in fat and fructose leads to enhanced hepatic mitochondrial aging, depletion, and dysfunction, which may be important determinants of nonalcoholic steatohepatitis pathogenesis.
Assuntos
Frutose , Fígado , Envelhecimento , Animais , Dieta , Frutose/efeitos adversos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MitocôndriasRESUMO
Vertical sleeve gastrectomy (VSG) is the best current therapy for remission of obesity and its co-morbidities. It is understood to alter the enterohepatic circulation of bile acids in vivo. Fibroblast growth factor 19 (FGF19) in human and its murine orthologue Fgf15 plays a pivotal role in this bile acid driven enterohepatic signaling. The present study evaluated the metabolic outcomes of VSG in Fgf15 deficient mice. 6-8 weeks old male wildtype mice (WT) and Fgf15 deficient mice (KO) were fed a high fat diet (HFD) for 8 weeks. At 8th week of diet, both WT and KO mice were randomly distributed to VSG or sham surgery. Post-surgery, mice were observed for 8 weeks while fed a HFD and then euthanized to collect tissues for experimental analysis. Fgf15 deficient (KO) mice lost weight post VSG, but glucose tolerance in KO mice did not improve post VSG compared to WT mice. Enteroids derived from WT and KO mice proliferated with bile acid exposure in vitro. Post VSG both WT and KO mice had similarly altered bile acid enterohepatic flux, however Fgf15 deficient mice post VSG had increased hepatic accumulation of free and esterified cholesterol leading to lipotoxicity related ER stress, inflammasome activation, and increased Fgf21 expression. Intact Fgf15 mediated enterohepatic bile acid signaling, but not changes in bile acid flux, appear to be important for the metabolic improvements post-murine bariatric surgery. These novel data introduce a potential point of distinction between bile acids acting as ligands compared to their canonical downstream signaling pathways.
RESUMO
Bariatric surgical procedures, such as vertical sleeve gastrectomy (VSG), are at present the most effective therapy for the treatment of obesity, and are associated with considerable improvements in co-morbidities, including type-2 diabetes mellitus. The underlying molecular mechanisms contributing to these benefits remain largely undetermined, despite offering the potential to reveal new targets for therapeutic intervention. Substantial changes in circulating total bile acids are known to occur after VSG. Moreover, bile acids are known to regulate metabolism by binding to the nuclear receptor FXR (farsenoid-X receptor, also known as NR1H4). We therefore examined the results of VSG surgery applied to mice with diet-induced obesity and targeted genetic disruption of FXR. Here we demonstrate that the therapeutic value of VSG does not result from mechanical restriction imposed by a smaller stomach. Rather, VSG is associated with increased circulating bile acids, and associated changes to gut microbial communities. Moreover, in the absence of FXR, the ability of VSG to reduce body weight and improve glucose tolerance is substantially reduced. These results point to bile acids and FXR signalling as an important molecular underpinning for the beneficial effects of this weight-loss surgery.
Assuntos
Cirurgia Bariátrica , Gastrectomia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ácidos e Sais Biliares/sangue , Composição Corporal , Ceco/microbiologia , Comportamento Alimentar , Mucosa Gástrica/metabolismo , Intolerância à Glucose/cirurgia , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/cirurgia , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Estômago/cirurgia , Redução de PesoRESUMO
Bariatric surgery is the most effective and durable treatment option for obesity today. More importantly, beyond weight loss, bariatric procedures have many advantageous metabolic effects including reversal of obesity-related liver disease--nonalcoholic steatohepatitis (NASH). NASH is an important comorbidity of obesity given that it is a precursor to the development of liver cirrhosis that may necessitate liver transplantation in the long run. Simultaneously, we and others have observed increased serum bile acids in humans and animals that undergo bariatric surgery. Specifically, our preclinical studies have included experimental procedures such as 'ileal transposition' or bile diversion and established procedures such as Roux-en-Y gastric bypass and the adjustable gastric band. Importantly, these effects are not simply the result of weight loss since our data show that the resolution of NASH and increase in serum bile acids are not seen in rodents that lose an equivalent amount of weight via food restriction. In particular, we have studied the role of altered bile acid signaling, in the potent impact of a bariatric procedure termed 'vertical sleeve gastrectomy' (VSG). In this review we focus on the mechanisms of NASH resolution and weight loss after VSG surgery. We highlight the fact that bariatric surgeries can be used as 'laboratories' to dissect the mechanisms by which these procedures work to improve obesity and fatty liver disease. We describe key bile acid signaling elements that may provide potential therapeutic targets for 'bariatric-mimetic technologies' that could produce benefits similar to bariatric surgery--but without the surgery!
Assuntos
Cirurgia Bariátrica , Ácidos e Sais Biliares/metabolismo , Hepatopatia Gordurosa não Alcoólica/cirurgia , Obesidade/cirurgia , Transdução de Sinais , Animais , Ácidos e Sais Biliares/sangue , Gastrectomia , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Redução de PesoRESUMO
OBJECTIVE: Surgical interventions that prevent nutrient exposure to the duodenum are among the most successful treatments for obesity and diabetes. However, these interventions are highly invasive, irreversible and often carry significant risk. The duodenal-endoluminal sleeve (DES) is a flexible tube that acts as a barrier to nutrient-tissue interaction along the duodenum. We implanted this device in Zucker Diabetic Fatty (ZDF) rats to gain greater understanding of duodenal nutrient exclusion on glucose homeostasis. DESIGN: ZDF rats were randomised to four groups: Naive, sham ad libitum, sham pair-fed, and DES implanted. Food intake, body weight (BW) and body composition were measured for 28â days postoperatively. Glucose, lipid and bile acid metabolism were evaluated, as well as histological assessment of the upper intestine. RESULTS: DES implantation induced a sustained decrease in BW throughout the study that was matched by pair-fed sham animals. Decreased BW resulted from loss of fat, but not lean mass. DES rats were also found to be more glucose tolerant than either ad libitum-fed or pair-fed sham controls, suggesting fat mass independent metabolic benefits. DES also reduced circulating triglyceride and glycerol levels while increasing circulating bile acids. Interestingly, DES stimulated a considerable increase in villus length throughout the upper intestine, which may contribute to metabolic improvements. CONCLUSIONS: Our preclinical results validate DES as a promising therapeutic approach to diabetes and obesity, which offers reversibility, low risk, low invasiveness and triple benefits including fat mass loss, glucose and lipid metabolism improvement which mechanistically may involve increased villus growth in the upper gut.
Assuntos
Glicemia/metabolismo , Duodeno/fisiologia , Absorção Intestinal , Síndrome Metabólica/terapia , Próteses e Implantes , Animais , Ácidos e Sais Biliares/sangue , Composição Corporal , Peso Corporal , Diabetes Mellitus Experimental/terapia , Duodeno/patologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Glicerol/sangue , Homeostase , Íleo/patologia , Jejuno/patologia , Masculino , Obesidade/terapia , Distribuição Aleatória , Ratos , Ratos Zucker , Triglicerídeos/sangueRESUMO
Fibroblast growth factor 15/19 (FGF15/19, mouse/human ortholog) is expressed in the ileal enterocytes of the small intestine and released postprandially in response to bile acid absorption. Previous reports of FGF15-/- mice have limited our understanding of gut-specific FGF15's role in metabolism. Therefore, we studied the role of endogenous gut-derived FGF15 in bile acid, cholesterol, glucose, and energy balance. We found that circulating levels of FGF19 were reduced in individuals with obesity and comorbidities, such as type 2 diabetes and metabolic dysfunction-associated fatty liver disease. Gene expression analysis of ileal FGF15-positive cells revealed differential expression during the obesogenic state. We fed standard chow or a high-fat metabolic dysfunction-associated steatohepatitis-inducing diet to control and intestine-derived FGF15-knockout (FGF15INT-KO) mice. Control and FGF15INT-KO mice gained similar body weight and adiposity and did not show genotype-specific differences in glucose, mixed meal, pyruvate, and glycerol tolerance. FGF15INT-KO mice had increased systemic bile acid levels but decreased cholesterol levels, pointing to a primary role for gut-derived FGF15 in regulating bile acid and cholesterol metabolism when exposed to obesogenic diet. These studies show that intestinal FGF15 plays a specific role in bile acid and cholesterol metabolism regulation but is not essential for energy and glucose balance.
Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Ácidos e Sais Biliares , Colesterol/metabolismo , Glucose , Obesidade/metabolismoRESUMO
Saturated fatty acids activate the c-Jun NH2-terminal kinase (JNK) pathway, resulting in chronic low-grade inflammation and the development of insulin resistance. Mixed-lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that mediates JNK activation in response to saturated fatty acids in vitro; however, the exact mechanism for diet-induced JNK activation in vivo is not known. Here, we have used MLK3-deficient mice to examine the role of MLK3 in a saturated-fat diet model of obesity. MLK3-KO mice fed a high-fat diet enriched in medium-chain saturated fatty acids for 16 wk had decreased body fat compared with wild-type (WT) mice due to increased energy expenditure independently of food consumption and physical activity. Moreover, MLK3 deficiency attenuated palmitate-induced JNK activation and M1 polarization in bone marrow-derived macrophages in vitro, and obesity induced JNK activation, macrophage infiltration into adipose tissue, and expression of proinflammatory cytokines in vivo. In addition, loss of MLK3 improved insulin resistance and decreased hepatic steatosis. Together, these data demonstrate that MLK3 promotes saturated fatty acid-induced JNK activation in vivo and diet-induced metabolic dysfunction.
Assuntos
Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Resistência à Insulina , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Obesidade/metabolismo , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/patologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Cruzamentos Genéticos , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , MAP Quinase Quinase Quinases/genética , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Obesidade/etiologia , Obesidade/imunologia , Obesidade/patologia , Técnicas de Cultura de Tecidos , MAP Quinase Quinase Quinase 11 Ativada por MitógenoRESUMO
Vertical sleeve gastrectomy (VSG), the most utilized bariatric procedure in clinical practice, greatly reduces body weight and improves a variety of metabolic disorders. However, one of its long-term complications is bone loss and increased risk of fracture. Elevated circulating sclerostin (SOST) and granulocyte-colony stimulating factor (G-CSF) concentrations have been considered as potential contributors to VSG-associated bone loss. To test these possibilities, we administrated antibodies to SOST or G-CSF receptor and investigated alterations to bone and marrow niche following VSG. Neutralizing either SOST or G-CSF receptor did not alter beneficial effects of VSG on adiposity and hepatic steatosis, and anti-SOST treatment provided a further improvement to glucose tolerance. SOST antibodies partially reduced trabecular and cortical bone loss following VSG by increasing bone formation, whereas G-CSF receptor antibodies had no effects on bone mass. The expansion in myeloid cellularity and reductions in bone marrow adiposity seen with VSG were partially eliminated by treatment with Anti-G-CSF receptor. Taken together, these experiments demonstrate that antibodies to SOST or G-CSF receptor may act through independent mechanisms to partially block effects of VSG on bone loss or marrow niche cells, respectively.
Assuntos
Medula Óssea , Receptores de Fator Estimulador de Colônias de Granulócitos , Humanos , Medula Óssea/metabolismo , Obesidade/metabolismo , Gastrectomia/efeitos adversos , Adipócitos/metabolismoRESUMO
BACKGROUND AND AIM: Platelets provide many functions in the body, especially to the liver. The purpose of this study is to investigate the effect of thrombocytosis with acute hepatitis induced by anti-Fas antibody and its mechanism. METHODS: Acute hepatitis was induced by administration of anti-Fas antibody in normal and thrombocytotic C57BL6J mice. For thrombocytosis, thrombopoietin; PEG-rHuMGDF was injected 5 days before and just prior to administration of anti-Fas antibody. To investigate the mechanisms, hepatocyte cell line (AML12) and sinusoidal endothelial cell line (M1) were induced apoptosis by staurosporine. They were cultured with platelets or thrombopoietin. Examination items were as follows: platelet number, alanine aminotransferase (ALT), histological findings, TUNEL (TdT-mediated dUTP-biotin Nick End Labeling) staining, and the expression of proteins associated with apoptosis in vivo and in vitro. RESULTS: Platelets were significantly increased in the thrombocytotic group (P < 0.01). Serum ALT levels were significantly reduced by thrombocytosis at 6, 24 and 72 h after the administration (P < 0.05). In histological findings, hemorrhagic necrosis was observed in the normal group, but not observed in the thrombocytotic group. TUNEL-positive hepatocytes were reduced and the expression of cleaved caspase-3 was significantly decreased in the thrombocytotic group. The phosphorylation of Akt, the increment of Bcl-xL and the decrease of cleaved caspase-3 were observed in AML12 cells cultured with platelets, but were not observed cultured with thrombopoietin. Platelets and thrombopoietin had no anti-apoptotic effect on M1 cells. CONCLUSION: Increase of platelets has a preventative effect against acute hepatitis induced by the anti-Fas antibody. It is suggested that platelets have a direct protective effect against apoptosis of hepatocytes.
Assuntos
Anticorpos , Hepatite/prevenção & controle , Trombocitopenia/sangue , Trombocitose/sangue , Trombopoese , Receptor fas/imunologia , Doença Aguda , Alanina Transaminase/sangue , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Hepatite/sangue , Hepatite/imunologia , Hepatite/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Contagem de Plaquetas , Polietilenoglicóis , Proteínas Recombinantes , Estaurosporina/farmacologia , Trombocitopenia/induzido quimicamente , Trombocitopenia/patologia , Trombocitose/induzido quimicamente , Trombocitose/patologia , Trombopoetina , Fatores de TempoRESUMO
BACKGROUND & AIMS: We previously reported that platelets promote hepatocyte proliferation. In this study, we focused on the role of platelets in liver sinusoidal endothelial cells (LSECs) in addition to their role in hepatocyte in liver regeneration. METHODS: Immortalized human LSECs (TMNK-1) were used. The LSECs were co-cultured with human platelets, and the proliferation of LSECs and the excretion of growth factors and interleukin-6 (IL-6) were subsequently measured. The main factor from platelets which induced the excretion of IL-6 from LSECs was determined using inhibitors of each component contained in the platelets. The need for direct contact between platelets and LSECs was investigated using cell culture inserts. The proliferation of human primary hepatocytes was measured after the addition of the supernatant of LSECs cultured with or without platelets. RESULTS: The number of LSECs cocultured with platelets significantly increased. Excretion of IL-6 and vascular endothelial growth factor (VEGF) increased in LSECs with platelets. JTE-013, a specific antagonist for sphingosine 1-phosphate (S1P) 2 receptors, inhibited the excretion of IL-6 from LSECs after the addition of platelets. When the platelets and LSECs were separated by the cell culture insert, the excretion of IL-6 from LSECs was decreased. DNA synthesis was significantly increased in human primary hepatocytes cultured with the supernatant of LSECs with platelets. CONCLUSIONS: Platelets promote LSEC proliferation and induce IL-6 and VEGF production. Direct contact between the platelets and LSECs and S1P, that are contained in platelets, were involved in the excretion of IL-6 from LSECs. IL-6 from LSECs induced proliferation of parenchymal hepatocytes.
Assuntos
Plaquetas/fisiologia , Células Endoteliais/fisiologia , Hepatócitos/fisiologia , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Interleucina-6/sangue , Fígado/citologia , Regeneração Hepática/fisiologia , Masculino , Fator A de Crescimento do Endotélio Vascular/sangueRESUMO
BACKGROUND/AIMS: The autonomic vagus nerve is thought to play an essential role in liver regeneration since hepatic vagotomy delays hepatic DNA synthesis. However, how the parasympathetic vagus nerve is involved in liver regeneration remains obscure. Kupffer cells are located in liver sinusoids adjacent to hepatocytes and might regulate liver regeneration by releasing interleukin-6 (IL-6). The present study examines the role of the vagus nerve and how Kupffer cells are involved in parasympathetic nerve-mediated liver regeneration in mice. METHODS: We performed surgical vagotomy of the hepatic branch and then partial hepatectomy (PH); some mice received acetylcholine (ACh) agonist/antagonist before PH. We then evaluated liver regeneration and signal transducer and activator of transcription-3 (STAT3) activation. We also investigated whether ACh stimulates IL-6 release from Kupffer cells. RESULTS: Surgical vagotomy impaired liver regeneration. STAT3, which is activated by IL-6 after hepatectomy and plays a pivotal role in liver regeneration, was less activated in vagotomized mice after PH. Post-PH STAT3 activation was recovered by administering vagotomized mice with an ACh agonist. Furthermore, ACh stimulated IL-6 release in Kupffer cells in vitro. CONCLUSION: The parasympathetic system (vagus nerve) contributes to liver regeneration after hepatectomy by stimulating IL-6 release from Kupffer cells followed by STAT3 activation in hepatocytes.
Assuntos
Sistema Nervoso Autônomo/fisiologia , Hepatectomia/métodos , Regeneração Hepática/fisiologia , Actinas/genética , Animais , Técnicas de Cultura de Células , Divisão Celular , Hepatócitos/citologia , Hepatócitos/fisiologia , Interleucina-6/genética , Interleucina-6/metabolismo , Células de Kupffer/citologia , Células de Kupffer/fisiologia , Fígado/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vagotomia/métodosRESUMO
OBJECTIVE: To evaluate the effect of thrombopoietin on liver regeneration after hepatectomy and antifibrosis under conditions of liver cirrhosis in rats. SUMMARY BACKGROUND DATA: We revealed that platelets induced by thrombopoietin administration promote liver regeneration after hepatectomy in the normal liver. METHODS: Seventy percent hepatectomy was carried out in rats, which were subsequently divided into 4 groups: (1) normal group without any treatment, (2) liver cirrhosis (LC) group, (3) combined thrombopoietin and liver cirrhosis (LC+TPO) group, and (4) combined thrombopoietin, antiplatelet serum and liver cirrhosis (LC+TPO+APS) group. Growth kinetics in the liver regeneration and growth factors were analyzed. Liver fibrotic area and activation of hepatic stellate cells were also investigated. RESULTS: In LC group, liver regeneration was significantly delayed compared with normal group 24 hours after hepatectomy. On the other hand, liver regeneration of LC+TPO group increased significantly compared with LC group, to a level that was the same as that recorded in normal group. In LC group, liver fibrotic area before hepatectomy was significantly higher compared with the normal group. Liver fibrosis of LC+TPO group was significantly reduced compared with LC group. The antifibrotic and liver regeneration promoting effects of LC+TPO group were inhibited by antiplatelet serum in LC+TPO+APS group. CONCLUSION: The administration of thrombopoietin reduces liver fibrosis and stimulates regeneration after hepatectomy through increment and accumulation of platelets in the cirrhotic liver. This could be a potentially useful treatment for liver cirrhosis.
Assuntos
Cirrose Hepática/prevenção & controle , Cirrose Hepática/fisiopatologia , Regeneração Hepática/efeitos dos fármacos , Polietilenoglicóis/administração & dosagem , Trombopoetina/administração & dosagem , Animais , Progressão da Doença , Hepatectomia , Fator de Crescimento de Hepatócito/metabolismo , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Falência Hepática/prevenção & controle , Masculino , Fator de Crescimento Derivado de Plaquetas/metabolismo , Complicações Pós-Operatórias/prevenção & controle , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Fator de Crescimento Transformador beta/metabolismoRESUMO
BACKGROUND: In liver surgery, ischemia/reperfusion injury occasionally leads to liver failure by activating Kupffer cells (KCs) and leukocytes. However, few reports have demonstrated a relationship between KCs and platelets in vivo. This study investigated the relationship between these cells using intravital microscopy. MATERIALS AND METHODS: Male Wistar rats were divided into two groups: (1) KC+ group, receiving 1 mL saline; and (2) KC- group, intravenously injected with liposome-encapsulated dichloromethylene disphosphonate for elimination of KCs. At 48 h after administration, 20 min of total normothermic hepatic ischemia was induced. Rhodamine-6G-labeled platelets and sinusoidal alterations were monitored using intravital microscopy up to 120 min after reperfusion. P-selectin, accumulated leukocytes and morphological damage, and alanine aminotransferase were evaluated. RESULTS: In the KC+ group, numbers of adherent platelets increased significantly within 30 min after reperfusion. Endothelial cells of sinusoids in which KCs were mainly located were destroyed and the sinusoids were significantly constricted after reperfusion. Conversely, in the KC- group, adherent platelets in sinusoids were suppressed, and sinusoidal perfusion, endothelial cell damage and serum alanine aminotransferase levels were significantly improved. P-selectin on sinusoidal endothelial cells was not observed up to 120 min after reperfusion in either group. CONCLUSIONS: Adherent platelets appear to reflect activation of KCs and lead to leukocyte accumulation, resulting in sinusoidal perfusion disturbance and liver failure. Evaluation of adherent platelets in the microcirculation offers an important marker of hepatic injury.
Assuntos
Plaquetas/fisiologia , Células de Kupffer/fisiologia , Fígado/fisiopatologia , Adesividade Plaquetária , Traumatismo por Reperfusão/fisiopatologia , Alanina Transaminase/sangue , Animais , Comunicação Celular , Ácido Clodrônico , Células Endoteliais/fisiologia , Células de Kupffer/efeitos dos fármacos , Fígado/ultraestrutura , Masculino , Microscopia de Vídeo , Selectina-P/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/patologia , VasoconstriçãoRESUMO
Provision of liquid enteral nutrition (LEN) during the perioperative period is standard practice for rodents undergoing bariatric surgery, yet these diets are associated with several challenges, including coagulation of the liquid diet within the delivery system and decreased postoperative consumption. We investigated the use of a commercially available high-calorie dietary gel supplement (DG) as an alternative food source for mice during the perioperative period. C57BL/6J male mice were fed high-fat diet for 8 to 10 wk prior to surgery. The study groups were: vertical sleeve gastrectomy (VSG) +DG, VSG+LEN, sham surgery+DG, and sham+LEN. Food and water intakes, body weight, and body fat composition was monitored throughout the study. Mice that received DG lost significantly more weight preoperatively than those fed LEN. However, during the postoperative period, body weight, body fat composition, and water and caloric intake were similar among all experimental diet groups. Three mice in the VSG+LEN group were euthanized due to clinical illness during the course of the study. In summary, feeding a high-calorie DG to mice undergoing VSG surgery is a viable alternative to LEN, given that DG does not significantly affect the surgical model of weight loss or result in adverse clinical outcomes. We recommend additional metabolic characterization of DG supplementation to ensure that this novel diet does not confound specific research goals in the murine VSG model.
Assuntos
Cirurgia Bariátrica/métodos , Gastrectomia/métodos , Assistência Perioperatória/veterinária , Tecido Adiposo , Criação de Animais Domésticos , Animais , Composição Corporal , Peso Corporal , Dieta Hiperlipídica , Ingestão de Energia , Nutrição Enteral , Géis , Ciência dos Animais de Laboratório , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Período Pós-OperatórioRESUMO
BACKGROUND: One-anastomosis gastric bypass (OAGB) and single-anastomosis duodenal switch (SADS) have become increasingly popular weight loss strategies. However, data directly comparing the effectiveness of these procedures with Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (SG) are limited. OBJECTIVES: To examine the metabolic outcomes of OAGB, SADS, RYGB, and SG in a controlled rodent model. SETTING: Academic research laboratory, United States. METHODS: Surgeries were performed in diet-induced obese Long-Evans rats, and metabolic outcomes were monitored before and for 15 weeks after surgery. RESULTS: All bariatric procedures induced weight loss compared with sham that lasted throughout the course of the study. The highest percent fat loss occurred after OAGB and RYGB. All bariatric procedures had improved glucose dynamics associated with an increase in insulin (notably OAGB and SADS) and/or glucagon-like protein-1 secretion. Circulating cholesterol was reduced in OAGB, SG, and RYGB. OAGB and SG additionally decreased circulating triglycerides. Liver triglycerides were most profoundly reduced after OAGB and RYGB. Circulating iron levels were decreased in all surgical groups, associated with a decreased hematocrit value and increased reticulocyte count. The fecal microbiome communities of OAGB, SADS, and RYGB were significantly altered; however, SG exhibited no change in microbiome diversity or composition. CONCLUSIONS: These data support the use of the rat for modeling bariatric surgical procedures and highlight the ability of the OAGB to meet or exceed the metabolic improvements of RYGB. These data point to the likelihood that each surgery accomplishes metabolic improvements through both overlapping and distinct mechanisms and warrants further research.
Assuntos
Anastomose em-Y de Roux/estatística & dados numéricos , Glicemia , Gastrectomia/estatística & dados numéricos , Derivação Gástrica/estatística & dados numéricos , Obesidade , Animais , Glicemia/análise , Glicemia/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Masculino , Obesidade/sangue , Obesidade/cirurgia , Ratos , Ratos Long-Evans , Estados UnidosRESUMO
In recent years, platelets are reported to promote liver, as well as bone regeneration and dermal wound healing. Platelets are required not only for thrombocytopenia treating but also for regenerative therapy. Platelets cannot be stored beyond three days, therefore, shortage of fresh platelets sometimes occurs. To preserve platelets for a long duration without degrading growth factors, a freeze-dried technique is required. We report here that platelets can be preserved by freeze-drying, using a programmed freezing method to avoid intracellular ice crystal formation. Freeze-dried platelets kept their morphological countenance and response with the agonist of thrombin was well maintained. Freeze-dried platelets stored adenine nucleotides, PDGF, and IGF-1 the same as those of fresh platelets. Freeze dried platelets also preserved their proliferative effect on hepatocytes identical to that of fresh platelets. These results of our study suggest that freeze dried platelets will obviate the storage problem of fresh platelets.
Assuntos
Plaquetas , Hepatócitos/citologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Proliferação de Células , Técnicas de Cocultura , Fibrinogênio/metabolismo , Liofilização , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Fator de Crescimento Derivado de Plaquetas/metabolismoRESUMO
OBJECTIVE: Our objective was to investigate the role of bile acids in hepatic steatosis reduction after vertical sleeve gastrectomy (VSG). DESIGN AND METHODS: High fat diet (HFD)-induced obese C57Bl/6 mice were randomized to VSG, Sham operation (Sham), Sham operation with pair feeding to VSG (Sham-PF), or nonsurgical controls (Naïve). All mice were on HFD until sacrifice. Mice were observed postsurgery and data for body weight, body composition, metabolic parameters, serum bile acid level and composition were collected. Further hepatic gene expression by mRNA-seq and RT-PCR analysis was assessed. RESULTS: VSG and Sham-PF mice lost equal weight postsurgery while VSG mice had the lowest hepatic triglyceride content at sacrifice. The VSG mice had elevated serum bile acid levels that positively correlated with maximal weight loss. Serum bile composition in the VSG group had increased cholic and tauroursodeoxycholic acid. These bile acid composition changes in VSG mice explained observed downregulation of hepatic lipogenic and bile acid synthetic genes. CONCLUSION: VSG in obese mice results in greater hepatic steatosis reduction than seen with caloric restriction alone. VSG surgery increases serum bile acids that correlate with weight lost postsurgery and changes serum bile composition that could explain suppression of hepatic genes responsible for lipogenesis.
Assuntos
Ácidos e Sais Biliares/sangue , Fígado Gorduroso/prevenção & controle , Gastroplastia , Fígado/metabolismo , Obesidade/cirurgia , Regulação para Cima , Redução de Peso , Animais , Ácidos e Sais Biliares/metabolismo , Restrição Calórica , Ácido Cólico/sangue , Ácido Cólico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Fígado Gorduroso/etiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Lipogênese , Fígado/patologia , Fígado/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Período Pós-Prandial , Distribuição Aleatória , Ácido Tauroquenodesoxicólico/sangue , Ácido Tauroquenodesoxicólico/metabolismo , Triglicerídeos/metabolismoRESUMO
OBJECTIVE: Bile acids (BA) are elevated after vertical sleeve gastrectomy (VSG) and farnesoid-X-receptor (FXR) is critical to the success of murine VSG. BA downregulate hepatic lipogenesis by activating the FXR-small heterodimer partner (SHP) pathway. The role of SHP in fatty liver disease improvement after VSG was tested. METHODS: Wild type (WT), SHP liver transgenic (SHP-Tg), and SHP knockout (SHP-KO) high-fat diet (HFD) fed mice underwent either VSG or Sham surgery. Body weight, BA level and composition, steatosis, and BA metabolism gene expression were evaluated. RESULTS: Obese WT mice post-VSG lost weight, reduced steatosis, decreased plasma alanine aminotransferase (ALT), had more BA absorptive ileal area, and elevated serum BA. Obese SHP-Tg mice post-VSG also lost weight and had decreased steatosis. SHP-KO mice were however resistant to steatosis despite weight gain on a HFD. Further SHP-KO mice that underwent VSG lost weight, but developed hepatic inflammation and had increased ALT. CONCLUSIONS: VSG produces weight loss independent of SHP status. SHP ablation creates a proinflammatory phenotype which is exacerbated after VSG despite weight loss. These inflammatory alterations are possibly related to factors extrinsic to a direct manifestation of NASH.