Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
World J Microbiol Biotechnol ; 32(12): 201, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27785708

RESUMO

The analysis of catabolic capacities of microorganisms is currently often achieved by cultivation approaches and by the analysis of genomic or metagenomic datasets. Recently, a microarray system designed from curated key aromatic catabolic gene families and key alkane degradation genes was designed. The collection of genes in the microarray can be exploited to indicate whether a given microbe or microbial community is likely to be functionally connected with certain degradative phenotypes, without previous knowledge of genome data. Herein, this microarray was applied to capture new insights into the catabolic capacities of copper-resistant actinomycete Amycolatopsis tucumanensis DSM 45259. The array data support the presumptive ability of the DSM 45259 strain to utilize single alkanes (n-decane and n-tetradecane) and aromatics such as benzoate, phthalate and phenol as sole carbon sources, which was experimentally validated by cultivation and mass spectrometry. Interestingly, while in strain DSM 45259 alkB gene encoding an alkane hydroxylase is most likely highly similar to that found in other actinomycetes, the genes encoding benzoate 1,2-dioxygenase, phthalate 4,5-dioxygenase and phenol hydroxylase were homologous to proteobacterial genes. This suggests that strain DSM 45259 contains catabolic genes distantly related to those found in other actinomycetes. Together, this study not only provided new insight into the catabolic abilities of strain DSM 45259, but also suggests that this strain contains genes uncommon within actinomycetes.


Assuntos
Actinobacteria/genética , Proteínas de Bactérias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Actinobacteria/metabolismo , Alcanos/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Cobre/metabolismo , Evolução Molecular , Metabolismo
2.
Microb Ecol ; 60(1): 180-91, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20393846

RESUMO

Protozoan grazers play an important role in controlling the density of crude-oil degrading marine communities as has been evidenced in a number of microcosm experiments. However, small bioreactors contain a low initial titre of protozoa and the growth of hydrocarbon-depleting bacteria is accompanied by the fast depletion of mineral nutrients and oxygen, which makes microcosms rather unsuitable for simulating the sequence of events after the oil spill in natural seawater environment. In the present study, the population dynamics of marine protozoan community have been analysed in a 500 l mesocosm experiment involving bioaugmented oil booms that contained oil sorbents and slow-release fertilisers. A significant increase in numbers of marine flagellates and ciliates on biofilms of oil-degrading microbes was microscopically observed as early as 8 days after the start of the experiment, when protozoa exhibited a population density peak making up to 3,000 cells ml(-1). Further, the protozoan density varied throughout the experiment, but never dropped below 80 cells ml(-1). An 18S rRNA gene-based fingerprinting analysis revealed several changes within the eukaryotic community over the whole course of the experiment. Initial growth of flagellates and small ciliates was followed by a predominance of larger protozoa. According to microscopic observations and SSU rRNA molecular analyses, most predominant were the ciliates belonging to Euplotidae and Scuticociliatia. This is the first study to characterise the eukaryotic communities specifically in a large-scale oil bioremediation trial using both microscopy-based and several molecular techniques.


Assuntos
Cilióforos/isolamento & purificação , Dinoflagellida/isolamento & purificação , Petróleo/microbiologia , Água do Mar/microbiologia , Biodegradação Ambiental , Cilióforos/genética , Cilióforos/crescimento & desenvolvimento , Impressões Digitais de DNA , Dinoflagellida/genética , Dinoflagellida/crescimento & desenvolvimento , Filogenia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética
3.
PLoS One ; 8(11): e77188, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244275

RESUMO

Translation is an important step in gene expression. The initiation of translation is phylogenetically diverse, since currently five different initiation mechanisms are known. For bacteria the three initiation factors IF1 - IF3 are described in contrast to archaea and eukaryotes, which contain a considerably higher number of initiation factor genes. As eukaryotes and archaea use a non-overlapping set of initiation mechanisms, orthologous proteins of both domains do not necessarily fulfill the same function. The genome of Haloferax volcanii contains 14 annotated genes that encode (subunits of) initiation factors. To gain a comprehensive overview of the importance of these genes, it was attempted to construct single gene deletion mutants of all genes. In 9 cases single deletion mutants were successfully constructed, showing that the respective genes are not essential. In contrast, the genes encoding initiation factors aIF1, aIF2γ, aIF5A, aIF5B, and aIF6 were found to be essential. Factors aIF1A and aIF2ß are encoded by two orthologous genes in H. volcanii. Attempts to generate double mutants failed in both cases, indicating that also these factors are essential. A translatome analysis of one of the single aIF2ß deletion mutants revealed that the translational efficiency of the second ortholog was enhanced tenfold and thus the two proteins can replace one another. The phenotypes of the single deletion mutants also revealed that the two aIF1As and aIF2ßs have redundant but not identical functions. Remarkably, the gene encoding aIF2α, a subunit of aIF2 involved in initiator tRNA binding, could be deleted. However, the mutant had a severe growth defect under all tested conditions. Conditional depletion mutants were generated for the five essential genes. The phenotypes of deletion mutants and conditional depletion mutants were compared to that of the wild-type under various conditions, and growth characteristics are discussed.


Assuntos
Proteínas Arqueais/genética , Deleção de Genes , Haloferax volcanii/genética , Iniciação Traducional da Cadeia Peptídica/fisiologia , Fatores de Iniciação em Procariotos/genética , Proteínas Arqueais/metabolismo , Haloferax volcanii/metabolismo , Fatores de Iniciação em Procariotos/metabolismo
4.
FEMS Microbiol Ecol ; 81(3): 520-36, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22462472

RESUMO

Diversity of indigenous microbial consortia and natural occurrence of obligate hydrocarbon-degrading bacteria (OHCB) are of central importance for efficient bioremediation techniques. To investigate the microbial population dynamics and composition of oil-degrading consortia, we have established a series of identical oil-degrading mesocosms at three different locations, Bangor (Menai Straits, Irish Sea), Helgoland (North Sea) and Messina (Messina Straits, Mediterranean Sea). Changes in microbial community composition in response to oil spiking, nutrient amendment and filtration were assessed by ARISA and DGGE fingerprinting and 16Sr RNA gene library analysis. Bacterial and protozoan cell numbers were quantified by fluorescence microscopy. Very similar microbial population sizes and dynamics, together with key oil-degrading microorganisms, for example, Alcanivorax borkumensis, were observed at all three sites; however, the composition of microbial communities was largely site specific and included variability in relative abundance of OHCB. Reduction in protozoan grazing had little effect on prokaryotic cell numbers but did lead to a decrease in the percentage of A. borkumensis 16S rRNA genes detected in clone libraries. These results underline the complexity of marine oil-degrading microbial communities and cast further doubt on the feasibility of bioaugmentation practices for use in a broad range of geographical locations.


Assuntos
Bactérias/classificação , Eucariotos/classificação , Consórcios Microbianos , Petróleo/microbiologia , Alcanivoraceae/genética , Alcanivoraceae/isolamento & purificação , Alcanivoraceae/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Cilióforos/classificação , Cilióforos/isolamento & purificação , Cilióforos/metabolismo , Eucariotos/isolamento & purificação , Eucariotos/metabolismo , Europa (Continente) , Mar Mediterrâneo , Mar do Norte , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
5.
Mol Microbiol ; 63(1): 166-76, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17163971

RESUMO

The membrane protein Imp1227 (Ignicoccus outer membrane protein; Imp1227) is the main protein constituent of the unique outer sheath of the hyperthermophilic, chemolithoautotrophic Archaeum Ignicoccus hospitalis. This outer sheath is the so far only known example for an asymmetric bilayer among the Archaea and is named 'outer membrane'. With its molecular mass of only 6.23 kDa, Imp1227 is found to be incorporated into the outer membrane in form of large, stable complexes. When separated by SDS-PAGE, they exhibit apparent masses of about 150, 50, 45 and 35 kDa. Dissociation into the monomeric form is achieved by treatment with SDS-containing solutions at temperatures at or above 113 degrees C. Electron micrographs of negatively stained samples confirm that isolated membranes are tightly packed with round complexes, about 7 nm in diameter, with a central, stain-filled 2 nm pore; a local two-dimensional crystalline arrangement in form of small patches can be detected by tomographic reconstruction. The comparison of the nucleotide and amino acid sequence of Imp1227 with public databases showed no reliable similarities with known proteins. Using secondary structure prediction and molecular modelling, an alpha-helical transmembrane domain is proposed; for the oligomer, a ring-shaped nonamer with a central 2 nm pore is a likely arrangement.


Assuntos
Desulfurococcaceae/química , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Estrutura Molecular , Porinas/química , Porinas/isolamento & purificação , Conformação Proteica
6.
Int J Syst Evol Microbiol ; 57(Pt 4): 803-808, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17392210

RESUMO

A novel chemolithoautotrophic and hyperthermophilic member of the genus Ignicoccus was isolated from a submarine hydrothermal system at the Kolbeinsey Ridge, to the north of Iceland. The new isolate showed high similarity to the two species described to date, Ignicoccus islandicus and Ignicoccus pacificus, in its physiological properties as well as in its unique cell architecture. However, phylogenetic analysis and investigations on the protein composition of the outer membrane demonstrated that the new isolate was clearly distinct from I. islandicus and I. pacificus. Furthermore, it is the only organism known so far which is able to serve as a host for 'Nanoarchaeum equitans', the only cultivated member of the 'Nanoarchaeota'. Therefore, the new isolate represents a novel species of the genus Ignicoccus, which we name Ignicoccus hospitalis sp. nov. (type strain KIN4/I(T)=DSM 18386(T)=JCM 14125(T)).


Assuntos
Desulfurococcaceae/classificação , Desulfurococcaceae/fisiologia , Nanoarchaeota/fisiologia , Composição de Bases , Crescimento Quimioautotrófico , Desulfurococcaceae/citologia , Desulfurococcaceae/isolamento & purificação , Islândia , Proteínas de Membrana/química , Dados de Sequência Molecular , Filogenia
7.
J Bacteriol ; 188(19): 6915-23, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16980494

RESUMO

Pyrococcus furiosus ("rushing fireball") was named for the ability of this archaeal coccus to rapidly swim at its optimal growth temperature, around 100 degrees C. Early electron microscopic studies identified up to 50 cell surface appendages originating from one pole of the coccus, which have been called flagella. We have analyzed these putative motility organelles and found them to be composed primarily (>95%) of a glycoprotein that is homologous to flagellins from other archaea. Using various electron microscopic techniques, we found that these flagella can aggregate into cable-like structures, forming cell-cell connections between ca. 5% of all cells during stationary growth phase. P. furiosus cells could adhere via their flagella to carbon-coated gold grids used for electron microscopic analyses, to sand grains collected from the original habitat (Porto di Levante, Vulcano, Italy), and to various other surfaces. P. furiosus grew on surfaces in biofilm-like structures, forming microcolonies with cells interconnected by flagella and adhering to the solid supports. Therefore, we concluded that P. furiosus probably uses flagella for swimming but that the cell surface appendages also enable this archaeon to form cable-like cell-cell connections and to adhere to solid surfaces.


Assuntos
Adesão Celular , Flagelos/fisiologia , Pyrococcus furiosus/fisiologia , Proteínas Arqueais/análise , Flagelos/química , Flagelos/ultraestrutura , Flagelina/análise , Glicoproteínas/análise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA