Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177208

RESUMO

Oncolytic virotherapy (OVT) is now understood to be an immunotherapy that uses viral infection to liberate tumor antigens in an immunogenic context to promote the development of antitumor immune responses. The only currently FDA-approved oncolytic virotherapy, T-Vec, is a modified type 1 herpes simplex virus (HSV-1). While T-Vec is associated with limited response rates, its modest efficacy supports the continued development of novel OVT viruses. Herein, we test the efficacy of a recombinant HSV-1, VC2, as an OVT in a syngeneic B16F10-derived mouse model of melanoma. VC2 possesses mutations that block its ability to enter neurons via axonal termini. This greatly enhances its safety profile by precluding the ability of the virus to establish latent infection. VC2 has been shown to be a safe, effective vaccine against both HSV-1 and HSV-2 infection in mice, guinea pigs, and nonhuman primates. We found that VC2 slows tumor growth rates and that VC2 treatment significantly enhances survival of tumor-engrafted, VC2-treated mice over control treatments. VC2-treated mice that survived initial tumor engraftment were resistant to a second engraftment as well as colonization of lungs by intravenous introduction of tumor cells. We found that VC2 treatment induced substantial increases in intratumoral T cells and a decrease in immunosuppressive regulatory T cells. This immunity was critically dependent on CD8+ T cells and less dependent on CD4+ T cells. Our data provide significant support for the continued development of VC2 as an OVT for the treatment of human and animal cancers.IMPORTANCE Current oncolytic virotherapies possess limited response rates. However, when certain patient selection criteria are used, oncolytic virotherapy response rates have been shown to increase. This, in addition to the increased response rates of oncolytic virotherapy in combination with other immunotherapies, suggests that oncolytic viruses possess significant therapeutic potential for the treatment of cancer. As such, it is important to continue to develop novel oncolytic viruses as well as support basic research into their mechanisms of efficacy. Our data demonstrate significant clinical potential for VC2, a novel type 1 oncolytic herpes simplex virus. Additionally, due to the high rates of survival and the dependence on CD8+ T cells for efficacy, our model will enable study of the immunological correlates of protection for VC2 oncolytic virotherapy and oncolytic virotherapy in general. Understanding the mechanisms of efficacious oncolytic virotherapy will inform the rational design of improved oncolytic virotherapies.


Assuntos
Herpesvirus Humano 1/genética , Neoplasias Pulmonares/prevenção & controle , Melanoma Experimental/prevenção & controle , Terapia Viral Oncolítica/métodos , Linfócitos T Reguladores/imunologia , Animais , Modelos Animais de Doenças , Feminino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL
2.
J Med Virol ; 92(10): 2087-2095, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32374457

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) is the causative agent of the coronavirus disease-2019 (COVID-19) pandemic. Coronaviruses enter cells via fusion of the viral envelope with the plasma membrane and/or via fusion of the viral envelope with endosomal membranes after virion endocytosis. The spike (S) glycoprotein is a major determinant of virus infectivity. Herein, we show that the transient expression of the SARS CoV-2 S glycoprotein in Vero cells caused extensive cell fusion (formation of syncytia) in comparison to limited cell fusion caused by the SARS S glycoprotein. Both S glycoproteins were detected intracellularly and on transfected Vero cell surfaces. These results are in agreement with published pathology observations of extensive syncytia formation in lung tissues of patients with COVID-19. These results suggest that SARS CoV-2 is able to spread from cell-to-cell much more efficiently than SARS effectively avoiding extracellular neutralizing antibodies. A systematic screening of several drugs including cardiac glycosides and kinase inhibitors and inhibitors of human immunodeficiency virus (HIV) entry revealed that only the FDA-approved HIV protease inhibitor, nelfinavir mesylate (Viracept) drastically inhibited S-n- and S-o-mediated cell fusion with complete inhibition at a 10-µM concentration. In-silico docking experiments suggested the possibility that nelfinavir may bind inside the S trimer structure, proximal to the S2 amino terminus directly inhibiting S-n- and S-o-mediated membrane fusion. Also, it is possible that nelfinavir may act to inhibit S proteolytic processing within cells. These results warrant further investigations of the potential of nelfinavir mesylate to inhibit virus spread at early times after SARS CoV-2 symptoms appear.


Assuntos
Fármacos Anti-HIV/farmacologia , Fusão de Membrana/efeitos dos fármacos , Nelfinavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Animais , Fármacos Anti-HIV/química , Sítios de Ligação , Fusão Celular , Chlorocebus aethiops , Células Gigantes/efeitos dos fármacos , Células Gigantes/patologia , Células Gigantes/virologia , Humanos , Simulação de Acoplamento Molecular , Nelfinavir/química , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Vírion/efeitos dos fármacos , Vírion/patogenicidade , Vírion/fisiologia , Tratamento Farmacológico da COVID-19
3.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27928002

RESUMO

Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NP-adjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Env-specific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV). IMPORTANCE: The results of the RV144 HIV vaccine trial, which demonstrated a rapid waning of protective immunity with time, have underscored the need to develop strategies to enhance the durability of protective immune responses. Our recent work in mice has highlighted the capacity of nanoparticle-encapsulated TLR ligands (NP) to induce potent and durable antibody responses that last a lifetime in mice. In the present study, we evaluated the ability of these NP adjuvants to promote robust and durable protective immune responses against SIV in nonhuman primates. Our results demonstrate that immunization of rhesus macaques with NP adjuvants mixed with soluble SIV Env or a virus-like particle form of Env (VLP) induces potent and durable Env-specific antibody responses in the serum and in vaginal secretions. These responses were superior to those induced by alum adjuvant, and they resulted in enhanced protection against a low-dose intravaginal challenge with a heterologous strain of SIV in animals with TRIM5a restrictive alleles. These results highlight the potential for such NP TLR L adjuvants in promoting robust and durable antibody responses against HIV in the next generation of HIV immunogens currently being developed.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antivirais/imunologia , Nanopartículas , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte/metabolismo , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Esquemas de Imunização , Imunoglobulina G/imunologia , Ligantes , Contagem de Linfócitos , Plasmócitos/imunologia , Plasmócitos/metabolismo , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/mortalidade , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Receptor 4 Toll-Like/metabolismo , Proteínas do Envelope Viral/imunologia
4.
J Virol ; 90(16): 7285-7302, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27252535

RESUMO

UNLABELLED: Despite significant progress in reducing peripartum mother-to-child transmission (MTCT) of human immunodeficiency virus (HIV) with antiretroviral therapy (ART), continued access to ART throughout the breastfeeding period is still a limiting factor, and breast milk exposure to HIV accounts for up to 44% of MTCT. As abstinence from breastfeeding is not recommended, alternative means are needed to prevent MTCT of HIV. We have previously shown that oral vaccination at birth with live attenuated Mycobacterium tuberculosis strains expressing simian immunodeficiency virus (SIV) genes safely induces persistent SIV-specific cellular and humoral immune responses both systemically and at the oral and intestinal mucosa. Here, we tested the ability of oral M. tuberculosis vaccine strains expressing SIV Env and Gag proteins, followed by systemic heterologous (MVA-SIV Env/Gag/Pol) boosting, to protect neonatal macaques against oral SIV challenge. While vaccination did not protect infant macaques against oral SIV acquisition, a subset of immunized animals had significantly lower peak viremia which inversely correlated with prechallenge SIV Env-specific salivary and intestinal IgA responses and higher-avidity SIV Env-specific IgG in plasma. These controller animals also maintained CD4(+) T cell populations better and showed reduced tissue pathology compared to noncontroller animals. We show that infants vaccinated at birth can develop vaccine-induced SIV-specific IgA and IgG antibodies and cellular immune responses within weeks of life. Our data further suggest that affinity maturation of vaccine-induced plasma antibodies and induction of mucosal IgA responses at potential SIV entry sites are associated with better control of viral replication, thereby likely reducing SIV morbidity. IMPORTANCE: Despite significant progress in reducing peripartum MTCT of HIV with ART, continued access to ART throughout the breastfeeding period is still a limiting factor. Breast milk exposure to HIV accounts for up to 44% of MTCT. Alternative measures, in addition to ART, are needed to achieve the goal of an AIDS-free generation. Pediatric HIV vaccines constitute a core component of such efforts. The results of our pediatric vaccine study highlight the potential importance of vaccine-elicited mucosal Env-specific IgA responses in combination with high-avidity systemic Env-specific IgG in protection against oral SIV transmission and control of viral replication in infant macaques. The induction of potent mucosal IgA antibodies by our vaccine is remarkable considering the age-dependent development of mucosal IgA responses postbirth. A deeper understanding of postnatal immune development may inform the design of improved vaccine strategies to enhance systemic and mucosal SIV/HIV antibody responses.


Assuntos
Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Formação de Anticorpos , Imunidade nas Mucosas , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Viremia/prevenção & controle , Administração Oral , Animais , Animais Recém-Nascidos , Portadores de Fármacos/administração & dosagem , Imunoglobulina A/análise , Imunoglobulina G/sangue , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Macaca mulatta , Mycobacterium tuberculosis/genética , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
5.
J Virol ; 90(19): 8842-54, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466414

RESUMO

UNLABELLED: The encouraging results of the RV144 vaccine trial have spurred interest in poxvirus prime-protein boost human immunodeficiency virus (HIV) vaccine modalities as a strategy to induce protective immunity. Because vaccine-induced protective immunity is critically determined by HIV envelope (Env) conformation, significant efforts are directed toward generating soluble trimeric Env immunogens that assume native structures. Using the simian immunodeficiency virus (SIV)-macaque model, we tested the immunogenicity and efficacy of sequential immunizations with DNA (D), modified vaccinia virus Ankara (MVA) (M), and protein immunogens, all expressing virus-like particles (VLPs) displaying membrane-anchored trimeric Env. A single VLP protein boost displaying trimeric gp160 adjuvanted with nanoparticle-encapsulated Toll-like receptor 4/7/8 (TLR4/7/8) agonists, administered 44 weeks after the second MVA immunization, induced up to a 3-fold increase in Env-specific IgG binding titers in serum and mucosa. Importantly, the VLP protein boost increased binding antibody against scaffolded V1V2, antibody-dependent phagocytic activity against VLP-coated beads, and antibody breadth and neutralizing antibody titers against homologous and heterologous tier 1 SIVs. Following 5 weekly intrarectal SIVmac251 challenges, two of seven DNA/MVA and VLP (DM+VLP)-vaccinated animals were completely protected compared to productive infection in all seven DM-vaccinated animals. Vaccinated animals demonstrated stronger acute viral pulldown than controls, but a trend for higher acute viremia was observed in the DM+VLP group, likely due to a slower recall of Gag-specific CD8 T cells. Our findings support immunization with VLPs containing trimeric Env as a strategy to augment protective antibody but underscore the need for optimal engagement of CD8 T cells to achieve robust early viral control. IMPORTANCE: The development of an effective HIV vaccine remains a global necessity for preventing HIV infection and reducing the burden of AIDS. While this goal represents a formidable challenge, the modest efficacy of the RV144 trial indicates that multicomponent vaccination regimens that elicit both cellular and humoral immune responses can prevent HIV infection in humans. However, whether protein immunizations synergize with DNA prime-viral vector boosts to enhance cellular and humoral immune responses remains poorly understood. We addressed this question in a nonhuman primate model, and our findings show benefit for sequential protein immunization combined with a potent adjuvant in boosting antibody titers induced by a preceding DNA/MVA immunization. This promising strategy can be further developed to enhance neutralizing antibody responses and boost CD8 T cells to provide robust protection and viral control.


Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas de DNA/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Portadores de Fármacos , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/genética , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vaccinia virus/genética , Proteínas do Envelope Viral/genética , Viremia/prevenção & controle
6.
Front Mol Biosci ; 10: 1199068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388243

RESUMO

Introduction: Oncolytic viruses (OVs) provide new modalities for cancer therapy either alone or in combination with synergistic immunotherapies and/or chemotherapeutics. Engineered Herpes Simplex Virus Type-1 (HSV-1) has shown strong promise for the treatment of various cancers in experimental animal models as well as in human patients, with some virus strains licensed to treat human melanoma and gliomas. In the present study we evaluated the efficacy of mutant HSV-1 (VC2) in a late stage, highly metastatic 4T1 murine syngeneic. Method: VC2 was constructed VC2 using double red recombination technology. For in-vivo efficacy we utilized a late stage 4T1 syngeneic and immunocompetent BALB/cJ mouse model breast cancer model which exhibits efficient metastasis to the lung and other organs. Results: VC2 replicated efficiently in 4T1 cells and in cell culture, achieving titers similar to those in African monkey kidney (Vero) cells. Intra-tumor treatment with VC2 did not appreciably reduce average primary tumor sizes but a significant reduction of lung metastasis was noted in mice treated intratumorally with VC2, but not with ultraviolet-inactivated VC2. This reduction of metastasis was associated with increased T cell infiltration comprised of CD4+ and CD4+CD8+ double-positive T cells. Characterization of purified tumor infiltrating T cells revealed a significant improvement in their proliferation ability compared to controls. In addition, significant T cell infiltration was observed in the metastatic nodules associated with reduction of pro-tumor PD-L1 and VEGF gene transcription. Conclusion: These results show that VC2 therapy can improve anti-tumor response associated with a better control of tumor metastasis. improve T cell responses and reduce pro-tumor biomarker gene transcription. VC2 holds promise for further development as an oncolytic and immunotherapeutic approach to treat breast and other cancers.

7.
Front Immunol ; 12: 789454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868077

RESUMO

Herpes simplex virus type-1 (HSV-1) ocular infection is one of the leading causes of infectious blindness in developed countries. The resultant herpetic keratitis (HK) is caused by an exacerbated reaction of the adaptive immune response that persists beyond virus clearance causing substantial damage to the cornea. Intramuscular immunization of mice with the HSV-1(VC2) live-attenuated vaccine strain has been shown to protect mice against lethal ocular challenge. Herein, we show that following ocular challenge, VC2 vaccinated animals control ocular immunopathogenesis in the absence of neutralizing antibodies on ocular surfaces. Ocular protection is associated with enhanced intracorneal infiltration of γδ T cells compared to mock-vaccinated animals. The observed γδ T cellular infiltration was inversely proportional to the infiltration of neutrophils, the latter associated with exacerbated tissue damage. Inhibition of T cell migration into ocular tissues by the S1P receptors agonist FTY720 produced significant ocular disease in vaccinated mice and marked increase in neutrophil infiltration. These results indicate that ocular challenge of mice immunized with the VC2 vaccine induce a unique ocular mucosal response that leads into the infiltration of γδ T cells resulting in the amelioration of infection-associated immunopathogenesis.


Assuntos
Quimiotaxia de Leucócito , Córnea/imunologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpesvirus Humano 1/imunologia , Linfócitos Intraepiteliais/imunologia , Ceratite Herpética/prevenção & controle , Vacinação , Animais , Córnea/patologia , Córnea/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/patogenicidade , Interações Hospedeiro-Patógeno , Injeções Intramusculares , Linfócitos Intraepiteliais/virologia , Ceratite Herpética/imunologia , Ceratite Herpética/patologia , Ceratite Herpética/virologia , Linfangiogênese , Camundongos Endogâmicos BALB C , Neovascularização Patológica , Infiltração de Neutrófilos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
8.
Vaccines (Basel) ; 9(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34358190

RESUMO

We have constructed bispecific immunoglobulin-like immunoadhesins that bind to both the HIV-envelope glycoproteins: gp120 and gp41. These immunoadhesins have N terminal domains of human CD4 engrafted onto the N-terminus of the heavy chain of human anti-gp41 mAb 7B2. Binding of these constructs to recombinant Env and their antiviral activities were compared to that of the parental mAbs and CD4, as well as to control mAbs. The CD4/7B2 constructs bind to both gp41 and gp140, as well as to native Env expressed on the surface of infected cells. These constructs deliver cytotoxic immunoconjugates to HIV-infected cells, but not as well as a mixture of 7B2 and sCD4, and opsonize for antibody-mediated phagocytosis. Most surprisingly, given that 7B2 neutralizes weakly, if at all, is that the chimeric CD4/7B2 immunoadhesins exhibit broad and potent neutralization of HIV, comparable to that of well-known neutralizing mAbs. These data add to the growing evidence that enhanced neutralizing activity can be obtained with bifunctional mAbs/immunoadhesins. The enhanced neutralization activity of the CD4/7B2 chimeras may result from cross-linking of the two Env subunits with subsequent inhibition of the pre-fusion conformational events that are necessary for entry.

9.
PLoS One ; 15(2): e0228252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027675

RESUMO

Herpes simplex virus type-1 (HSV-1) can cause severe ocular infection and blindness. We have previously shown that the HSV-1 VC2 vaccine strain is protective in mice and guinea pigs against genital herpes infection following vaginal challenge with HSV-1 or HSV-2. In this study, we evaluated the efficacy of VC2 intramuscular vaccination in mice against herpetic keratitis following ocular challenge with lethal human clinical strain HSV-1(McKrae). VC2 vaccination in mice produced superior protection and morbidity control in comparison to its parental strain HSV-1(F). Specifically, after HSV-1(McKrae) ocular challenge, all VC2 vaccinated- mice survived, while 30% of the HSV-1(F)- vaccinated and 100% of the mock-vaccinated mice died post challenge. VC2-vaccinated mice did not exhibit any symptoms of ocular infection and completely recovered from initial conjunctivitis. In contrast, HSV-1(F)-vaccinated mice developed time-dependent progressive keratitis characterized by corneal opacification, while mock-vaccinated animals exhibited more severe stromal keratitis characterized by immune cell infiltration and neovascularization in corneal stroma with corneal opacification. Cornea in VC2-immunized mice exhibited significantly increased infiltration of CD3+ T lymphocytes and decreased infiltration of Iba1+ macrophages in comparison to mock- or HSV-1(F)-vaccinated groups. VC2 immunization produced higher virus neutralization titers than HSV-1(F) post challenge. Furthermore, VC-vaccination significantly increased the CD4 T central memory (TCM) subsets and CD8 T effector memory (TEM) subsets in the draining lymph nodes following ocular HSV-1 (McKrae) challenge, then mock- or HSV-1(F)-vaccination. These results indicate that VC2 vaccination produces a protective immune response at the site of challenge to protect against HSV-1-induced ocular pathogenesis.


Assuntos
Vacinas contra o Vírus do Herpes Simples/imunologia , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/patogenicidade , Animais , Antígenos Virais/imunologia , Córnea/patologia , Córnea/virologia , Feminino , Herpes Simples/patologia , Herpes Simples/veterinária , Herpesvirus Humano 1/metabolismo , Humanos , Injeções Intramusculares , Camundongos , Camundongos SCID , Vacinação
10.
AIDS Res Hum Retroviruses ; 35(3): 310-325, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30303405

RESUMO

The majority of human immunodeficiency virus (HIV) type 1 infections in infants are acquired orally through breastfeeding. Toward development of a pediatric HIV vaccine to prevent breastmilk transmission, we tested the efficacy of a simultaneous oral and intramuscular (IM) vaccination regimen for preventing oral simian immunodeficiency virus (SIV) transmission in infant rhesus macaques. Two groups of neonatal macaques were immunized with DNA encoding SIV virus-like particles (DNA-SIV) on weeks 0 and 3, then boosted with modified vaccinia Ankara (MVA) virus expressing SIV antigens (MVA-SIV) on weeks 6 and 9. One group was prime/boosted by the IM route only. Another group was immunized with DNA by both the IM and topical oral (O) buccal routes, and boosted with MVA-SIV by both the IM and sublingual (SL) routes. A third group of control animals received saline by O + IM routes on weeks 0 and 3, and empty MVA by SL + IM routes on weeks 6 and 9. On week 12, infants were orally challenged once weekly with SIVmac251 until infected. The vaccine regimen that included oral routes resulted in reduced peak viremia. The rate of infection acquisition in vaccinated infants was found to be associated with prechallenge intestinal immunoglobulin G (IgG) responses to SIV gp120 and V1V2. Peak viremia was inversely correlated with postinfection intestinal IgG responses to gp120, gp41, and V1V2. These results suggest that codelivery of a pediatric HIV vaccine by an oral route may be superior to IM-only regimens for generating mucosal antibodies and preventing HIV breastmilk transmission in neonates.


Assuntos
Glicoproteínas de Membrana/imunologia , Boca/virologia , Vacinas contra a SAIDS/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/imunologia , Vacinação/métodos , Vaccinia virus/genética , Proteínas do Envelope Viral/imunologia , Administração Oral , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Infecções por HIV/terapia , Imunoglobulina G/metabolismo , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Injeções Intramusculares , Macaca mulatta , Boca/efeitos dos fármacos , Mucosa/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Viremia/tratamento farmacológico
11.
JCI Insight ; 4(4)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30830870

RESUMO

Antibodies and cytotoxic T cells represent 2 arms of host defense against pathogens. We hypothesized that vaccines that induce both high-magnitude CD8+ T cell responses and antibody responses might confer enhanced protection against HIV. To test this hypothesis, we immunized 3 groups of nonhuman primates: (a) Group 1, which includes sequential immunization regimen involving heterologous viral vectors (HVVs) comprising vesicular stomatitis virus, vaccinia virus, and adenovirus serotype 5-expressing SIVmac239 Gag; (b) Group 2, which includes immunization with a clade C HIV-1 envelope (Env) gp140 protein adjuvanted with nanoparticles containing a TLR7/8 agonist (3M-052); and (c) Group 3, which includes a combination of both regimens. Immunization with HVVs induced very high-magnitude Gag-specific CD8+ T cell responses in blood and tissue-resident CD8+ memory T cells in vaginal mucosa. Immunization with 3M-052 adjuvanted Env protein induced robust and persistent antibody responses and long-lasting innate responses. Despite similar antibody titers in Groups 2 and 3, there was enhanced protection in the younger animals in Group 3, against intravaginal infection with a heterologous SHIV strain. This protection correlated with the magnitude of the serum and vaginal Env-specific antibody titers on the day of challenge. Thus, vaccination strategies that induce both CD8+ T cell and antibody responses can confer enhanced protection against infection.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Antivirais/imunologia , Infecções por HIV/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/imunologia , Imunogenicidade da Vacina , Macaca mulatta , Mucosa/imunologia , Mucosa/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Ácidos Esteáricos/administração & dosagem , Ácidos Esteáricos/imunologia , Resultado do Tratamento , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vagina/imunologia , Vagina/virologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
12.
PLoS One ; 12(7): e0180245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28671952

RESUMO

Mechanisms responsible for natural control of human immunodeficiency type 1 (HIV) replication in elite controllers (EC) remain incompletely defined. To determine if EC generate high quality HIV-specific IgA responses, we used Western blotting to compare the specificities and frequencies of IgA to HIV antigens in serum of gender-, age- and race-matched EC and aviremic controllers (HC) and viremic noncontrollers (HN) on highly active antiretroviral therapy (HAART). Concentrations and avidity of IgA to HIV antigens were measured using ELISA or multiplex assays. Measurements for IgG were performed in parallel. EC were found to have stronger p24- and V1V2-specific IgG responses than HN, but there were no IgG differences for EC and HC. In contrast, IgA in EC serum bound more frequently to gp160 and gag proteins than IgA in HC or HN. The avidity of anti-gp41 IgA was also greater in EC, and these subjects had stronger IgA responses to the gp41 heptad repeat region 1 (HR1), a reported target of anti-bacterial RNA polymerase antibodies that cross react with gp41. However, EC did not demonstrate greater IgA responses to E. coli RNA polymerase or to peptides containing the shared LRAI sequence, suggesting that most of their HR1-specific IgA antibodies were not induced by intestinal microbiota. In both EC and HAART recipients, the concentrations of HIV-specific IgG were greater than HIV-specific IgA, but their avidities were comparable, implying that they could compete for antigen. Exceptions were C1 peptides and V1V2 loops. IgG and IgA responses to these antigens were discordant, with IgG reacting to V1V2, and IgA reacting to C1, especially in EC. Interestingly, EC with IgG hypergammaglobulinemia had greater HIV-specific IgA and IgG responses than EC with normal total IgG levels. Heterogeneity in EC antibody responses may therefore be due to a more focused HIV-specific B cell response in some of these individuals. Overall, these data suggest that development of HIV-specific IgA responses and affinity maturation of anti-gp41 IgA antibodies occurs to a greater extent in EC than in subjects on HAART. Future studies will be required to determine if IgA antibodies in EC may contribute in control of viral replication.


Assuntos
Terapia Antirretroviral de Alta Atividade , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Imunoglobulina A/sangue , Adulto , Afinidade de Anticorpos , Ensaio de Imunoadsorção Enzimática , Feminino , Anticorpos Anti-HIV/biossíntese , Infecções por HIV/tratamento farmacológico , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade
13.
Open Forum Infect Dis ; 3(1): ofw034, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27006959

RESUMO

Background. In this study, we analyzed the protective efficacy of a simian immunodeficiency virus (SIV) macaque 239 (SIVmac239) analogue of the clinically tested GOVX-B11 deoxyribonucleic acid (DNA)/modified vaccinia Ankara (MVA) human immunodeficiency virus vaccine. Methods. The tested vaccine used a DNA immunogen mutated to mimic the human vaccine and a regimen with DNA deliveries at weeks 0 and 8 and MVA deliveries at weeks 16 and 32. Twelve weekly rectal challenges with 0.3 animal infectious doses of SIV sootey mangabey E660 (SIVsmE660) were administered starting at 6 months after the last immunization. Results. Over the first 6 rectal exposures to SIVsmE660, <10-year-old tripartite motif-containing protein 5 (TRIM5)α-permissive rhesus macaques showed an 80% reduction in per-exposure risk of infection as opposed to a 46% reduction in animals over 10 years old; and, over the 12 challenges, they showed a 72% as opposed to a 10% reduction. Analyses of elicited immune responses suggested that higher antibody responses in the younger animals had played a role in protection. Conclusions. The simian analogue of the GOVX-B11 HIV provided strong protection against repeated rectal challenges in young adult macaques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA