Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 32(2): 167-175, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29996678

RESUMO

Fire blight, a devastating disease caused by the bacterium Erwinia amylovora, is a major threat to apple crop production. To improve our understanding of the fire blight disease and to identify potential strategies to control the pathogen, we studied the apple protein HIPM (for HrpN-interacting protein from Malus spp.), which has previously been identified as interacting with the E. amylovora effector protein HrpN. Transgenic apple plants were generated with reduced HIPM expression, using an RNA interference construct, and were subsequently analyzed for susceptibility to E. amylovora infection. Lines exhibiting a greater than 50% silencing of HIPM expression showed a significant decrease in susceptibility to E. amylovora infection. Indeed, a correlation between HIPM expression and E. amylovora infection was identified, demonstrating the crucial role of HIPM during fire blight disease progression. Furthermore, an apple oxygen-evolving enhancer-like protein (MdOEE) was identified via a yeast two-hybrid screen to interact with HIPM. This result was confirmed with bimolecular fluorescence complementation assays and leads to new hypotheses concerning the response mechanism of the plant to E. amylovora as well as the mechanism of infection of the bacterium. These results suggest that MdOEE and, particularly, HIPM are promising targets for further investigations toward the genetic improvement of apple.


Assuntos
Erwinia amylovora , Expressão Gênica , Malus , Resistência à Doença/genética , Erwinia amylovora/fisiologia , Malus/genética , Malus/microbiologia , Doenças das Plantas/genética
2.
Nat Protoc ; 13(12): 2844-2863, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30390050

RESUMO

The CRISPR-Cas9 genome-editing tool and the availability of whole-genome sequences from plant species have revolutionized our ability to introduce targeted mutations into important crop plants, both to explore genetic changes and to introduce new functionalities. Here, we describe protocols adapting the CRISPR-Cas9 system to apple and grapevine plants, using both plasmid-mediated genome editing and the direct delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to achieve efficient DNA-free targeted mutations in apple and grapevine protoplasts. We provide a stepwise protocol for the design and transfer of CRISPR-Cas9 components to apple and grapevine protoplasts, followed by verification of highly efficient targeted mutagenesis, and regeneration of plants following the plasmid-mediated delivery of components. Our plasmid-mediated procedure and the direct delivery of CRISPR-Cas9 RNPs can both be utilized to modulate traits of interest with high accuracy and efficiency in apple and grapevine, and could be extended to other crop species. The complete protocol employing the direct delivery of CRISPR-Cas9 RNPs takes as little as 2-3 weeks, whereas the plasmid-mediated procedure takes >3 months to regenerate plants and study the mutations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Malus/genética , Mutagênese , Vitis/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma de Planta , Mutação , Plantas Geneticamente Modificadas/genética , Plasmídeos/genética
3.
Front Plant Sci ; 7: 1904, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066464

RESUMO

The combined availability of whole genome sequences and genome editing tools is set to revolutionize the field of fruit biotechnology by enabling the introduction of targeted genetic changes with unprecedented control and accuracy, both to explore emergent phenotypes and to introduce new functionalities. Although plasmid-mediated delivery of genome editing components to plant cells is very efficient, it also presents some drawbacks, such as possible random integration of plasmid sequences in the host genome. Additionally, it may well be intercepted by current process-based GMO regulations, complicating the path to commercialization of improved varieties. Here, we explore direct delivery of purified CRISPR/Cas9 ribonucleoproteins (RNPs) to the protoplast of grape cultivar Chardonnay and apple cultivar such as Golden delicious fruit crop plants for efficient targeted mutagenesis. We targeted MLO-7, a susceptible gene in order to increase resistance to powdery mildew in grape cultivar and DIPM-1, DIPM-2, and DIPM-4 in the apple to increase resistance to fire blight disease. Furthermore, efficient protoplast transformation, the molar ratio of Cas9 and sgRNAs were optimized for each grape and apple cultivar. The targeted mutagenesis insertion and deletion rate was analyzed using targeted deep sequencing. Our results demonstrate that direct delivery of CRISPR/Cas9 RNPs to the protoplast system enables targeted gene editing and paves the way to the generation of DNA-free genome edited grapevine and apple plants.

4.
Trends Biotechnol ; 33(2): 62-4, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25129425

RESUMO

The availability of genome sequences for many fruit crops has redefined the boundaries of genetic engineering and genetically modified (GM) crop plants. However commercialization of GM crops is hindered by numerous regulatory and social hurdles. Here, we focus on recently developed genome-editing tools for fruit crop improvement and their importance from the consumer perspective. Challenges and opportunities for the deployment of new genome-editing tools for fruit plants are also discussed.


Assuntos
Produtos Agrícolas/genética , Frutas/genética , Engenharia Genética/ética , Genoma de Planta , Mutagênese , Agrobacterium/genética , Endonucleases/genética , Plantas Geneticamente Modificadas , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA