Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 410(1): 86-97, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26688546

RESUMO

The SMYD (SET and MYND domain) family of lysine methyltransferases harbor a unique structure in which the methyltransferase (SET) domain is intervened by a zinc finger protein-protein interaction MYND domain. SMYD proteins methylate both histone and non-histone substrates and participate in diverse biological processes including transcriptional regulation, DNA repair, proliferation and apoptosis. Smyd1 is unique among the five family members in that it is specifically expressed in striated muscles. Smyd1 is critical for development of the right ventricle in mice. In zebrafish, Smyd1 is necessary for sarcomerogenesis in fast-twitch muscles. Smyd1 is expressed in the skeletal muscle lineage throughout myogenesis and in mature myofibers, shuttling from nucleus to cytosol during myoblast differentiation. Because of this expression pattern, we hypothesized that Smyd1 plays multiple roles at different stages of myogenesis. To determine the role of Smyd1 in mammalian myogenesis, we conditionally eliminated Smyd1 from the skeletal muscle lineage at the myoblast stage using Myf5(cre). Deletion of Smyd1 impaired myoblast differentiation, resulted in fewer myofibers and decreased expression of muscle-specific genes. Muscular defects were temporally restricted to the second wave of myogenesis. Thus, in addition to the previously described functions for Smyd1 in heart development and skeletal muscle sarcomerogenesis, these results point to a novel role for Smyd1 in myoblast differentiation.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Desenvolvimento Muscular , Proteínas Musculares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/análise , Camundongos , Fibras Musculares Esqueléticas , Proteínas Musculares/análise , Mioblastos/citologia , Fatores de Transcrição/análise
2.
Endocrinology ; 162(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300995

RESUMO

Androgen receptor (AR) signaling continues to drive castration-resistant prostate cancer (CRPC) in spite of androgen deprivation therapy (ADT). Constitutively active shorter variants of AR, lacking the ligand binding domain, are frequently expressed in CRPC and have emerged as a potential mechanism for prostate cancer to escape ADT. ARv7 and ARv567es are 2 of the most commonly detected variants of AR in clinical samples of advanced, metastatic prostate cancer. It is not clear if variants of AR merely act as weaker substitutes for AR or can mediate unique isoform-specific activities different from AR. In this study, we employed LNCaP prostate cancer cell lines with inducible expression of ARv7 or ARv567es to delineate similarities and differences in transcriptomics, metabolomics, and lipidomics resulting from the activation of AR, ARv7, or ARv567es. While the majority of target genes were similarly regulated by the action of all 3 isoforms, we found a clear difference in transcriptomic activities of AR versus the variants, and a few differences between ARv7 and ARv567es. Some of the target gene regulation by AR isoforms was similar in the VCaP background as well. Differences in downstream activities of AR isoforms were also evident from comparison of the metabolome and lipidome in an LNCaP model. Overall our study implies that shorter variants of AR are capable of mediating unique downstream activities different from AR and some of these are isoform specific.


Assuntos
Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/fisiologia , Processamento Alternativo/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Proteínas Mutantes/fisiologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/fisiologia , Receptores Androgênicos/química , Receptores Androgênicos/genética
4.
Methods Mol Biol ; 1668: 167-176, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28842909

RESUMO

Mammalian myogenesis occurs in two distinct phases, primary and secondary, which are temporally separated. The primary wave occurs shortly after somitogenesis producing embryonic myofibers. The secondary wave occurs after somitogenesis producing fetal myofibers that form adjacent to the embryonic myofibers. The myogenic cells that give rise to these two waves have distinct characteristics as do the myofibers they produce. The objective of this chapter is to describe our methods for quantifying embryonic and fetal myofiber development in mouse embryos using immunofluorescence.


Assuntos
Embrião de Mamíferos/embriologia , Feto/embriologia , Imunofluorescência/métodos , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/embriologia , Animais , Proliferação de Células , Feminino , Corantes Fluorescentes/química , Camundongos , Camundongos Knockout , Mioblastos/metabolismo , Imagem Óptica , Somitos/metabolismo
5.
Dis Model Mech ; 9(3): 335-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26935106

RESUMO

HIRA is the histone chaperone responsible for replication-independent incorporation of histone variant H3.3 within gene bodies and regulatory regions of actively transcribed genes, and within the bivalent promoter regions of developmentally regulated genes. The HIRA gene lies within the 22q11.2 deletion syndrome critical region; individuals with this syndrome have multiple congenital heart defects. Because terminally differentiated cardiomyocytes have exited the cell cycle, histone variants should be utilized for the bulk of chromatin remodeling. Thus, HIRA is likely to play an important role in epigenetically defining the cardiac gene expression program. In this study, we determined the consequence of HIRA deficiency in cardiomyocytes in vivo by studying the phenotype of cardiomyocyte-specific Hira conditional-knockout mice. Loss of HIRA did not perturb heart development, but instead resulted in cardiomyocyte hypertrophy and susceptibility to sarcolemmal damage. Cardiomyocyte degeneration gave way to focal replacement fibrosis and impaired cardiac function. Gene expression was widely altered in Hira conditional-knockout hearts. Significantly affected pathways included responses to cellular stress, DNA repair and transcription. Consistent with heart failure, fetal cardiac genes were re-expressed in the Hira conditional knockout. Our results suggest that transcriptional regulation by HIRA is crucial for cardiomyocyte homeostasis.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proteínas de Ciclo Celular/deficiência , Chaperonas de Histonas/deficiência , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Sarcolema/patologia , Fatores de Transcrição/deficiência , Animais , Apoptose/genética , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Dano ao DNA/genética , Reparo do DNA/genética , Feto/metabolismo , Regulação da Expressão Gênica , Testes de Função Cardíaca , Chaperonas de Histonas/metabolismo , Camundongos Knockout , Miócitos Cardíacos/patologia , Especificidade de Órgãos , Estresse Oxidativo/genética , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
6.
Dis Model Mech ; 9(3): 347-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26935107

RESUMO

The Smyd1 gene encodes a lysine methyltransferase specifically expressed in striated muscle. Because Smyd1-null mouse embryos die from heart malformation prior to formation of skeletal muscle, we developed a Smyd1 conditional-knockout allele to determine the consequence of SMYD1 loss in mammalian skeletal muscle. Ablation of SMYD1 specifically in skeletal myocytes after myofiber differentiation using Myf6(cre) produced a non-degenerative myopathy. Mutant mice exhibited weakness, myofiber hypotrophy, prevalence of oxidative myofibers, reduction in triad numbers, regional myofibrillar disorganization/breakdown and a high percentage of myofibers with centralized nuclei. Notably, we found broad upregulation of muscle development genes in the absence of regenerating or degenerating myofibers. These data suggest that the afflicted fibers are in a continual state of repair in an attempt to restore damaged myofibrils. Disease severity was greater for males than females. Despite equivalent expression in all fiber types, loss of SMYD1 primarily affected fast-twitch muscle, illustrating fiber-type-specific functions for SMYD1. This work illustrates a crucial role for SMYD1 in skeletal muscle physiology and myofibril integrity.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/enzimologia , Miofibrilas/enzimologia , Miofibrilas/patologia , Fatores de Transcrição/metabolismo , Animais , Feminino , Masculino , Camundongos Knockout , Desenvolvimento Muscular/genética , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/ultraestrutura , Força Muscular , Atrofia Muscular/patologia , Miofibrilas/ultraestrutura , Tamanho do Órgão , Oxirredução , Regeneração , Sarcolema/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA