RESUMO
Improvements in the diagnosis and treatment of cancer have revealed long-term side effects of chemotherapeutics, particularly cardiotoxicity. Here, we present paired transcriptomics and metabolomics data characterizing in vitro cardiotoxicity to three compounds: 5-fluorouracil, acetaminophen, and doxorubicin. Standard gene enrichment and metabolomics approaches identify some commonly affected pathways and metabolites but are not able to readily identify metabolic adaptations in response to cardiotoxicity. The paired data was integrated with a genome-scale metabolic network reconstruction of the heart to identify shifted metabolic functions, unique metabolic reactions, and changes in flux in metabolic reactions in response to these compounds. Using this approach, we confirm previously seen changes in the p53 pathway by doxorubicin and RNA synthesis by 5-fluorouracil, we find evidence for an increase in phospholipid metabolism in response to acetaminophen, and we see a shift in central carbon metabolism suggesting an increase in metabolic demand after treatment with doxorubicin and 5-fluorouracil.
Assuntos
Acetaminofen , Cardiotoxicidade , Humanos , Cardiotoxicidade/metabolismo , Metabolômica , Doxorrubicina/farmacologia , Perfilação da Expressão Gênica , Fluoruracila/farmacologiaRESUMO
BACKGROUND & OBJECTIVES: Screening for pancreatic cancer is recommended for individuals with a strong family history, certain genetic syndromes, or a neoplastic cyst of the pancreas. However, limited data supports a survival benefit attributable to screening these higher-risk individuals. METHODS: All patients enrolled in screening at a High-Risk Pancreatic Cancer Clinic (HRC) from July 2013 to June 2020 were identified from a prospectively maintained institutional database and compared to patients evaluated at a Surgical Oncology Clinic (SOC) at the same institution during the same period. Clinical outcomes of patients selected for surgical resection, particularly clinicopathologic stage and overall survival, were compared. RESULTS: Among 826 HRC patients followed for a median (IQR) of 2.3 (0.8-4.2) years, 128 were selected for surgical resection and compared to 402 SOC patients selected for resection. Overall survival was significantly longer among HRC patients (median survival: not reached vs. 2.6 years, p < 0.001). Among 31 HRC and 217 SOC patients with a diagnosis of pancreatic ductal adenocarcinoma (PDAC), the majority of HRC patients were diagnosed with stage 0 disease (carcinoma in situ), while the majority of SOC patients were diagnosed with stage II disease (p < 0.001). Overall survival after resection of invasive PDAC was also significantly longer among HRC patients compared to SOC patients (median survival 5.5 vs. 1.6 years, p = 0.002). CONCLUSION: Patients at increased risk for PDAC and followed with guideline-based screening exhibited downstaging of disease and improved survival from PDAC in comparison to patients who were not screened.
Assuntos
Carcinoma Ductal Pancreático , Detecção Precoce de Câncer , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Taxa de Sobrevida , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/diagnóstico , Fatores de Risco , Seguimentos , Estudos Retrospectivos , Estudos Prospectivos , Prognóstico , Pancreatectomia/mortalidadeRESUMO
miR-206, miR-1a-1, and miR-1a-2 are induced during differentiation of skeletal myoblasts and promote myogenesis in vitro. miR-206 is required for skeletal muscle regeneration in vivo. Although this miRNA family is hypothesized to play an essential role in differentiation, a triple knock-out (tKO) of the three genes has not been done to test this hypothesis. We report that tKO C2C12 myoblasts generated using CRISPR/Cas9 method differentiate despite the expected derepression of the miRNA targets. Surprisingly, their mitochondrial function is diminished. tKO mice demonstrate partial embryonic lethality, most likely due to the role of miR-1a in cardiac muscle differentiation. Two tKO mice survive and grow normally to adulthood with smaller myofiber diameter, diminished physical performance, and an increase in PAX7 positive satellite cells. Thus, unlike other miRNAs important in other differentiation pathways, the miR-206 family is not absolutely essential for myogenesis and is instead a modulator of optimal differentiation of skeletal myoblasts.
Assuntos
MicroRNAs/genética , Mitocôndrias/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/fisiologia , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Doenças Musculares/genéticaRESUMO
Gastric cancer (GC) represents a major global health challenge as a highly prevalent disease with high mortality whose global incidence and mortality are predicted to worsen over the coming years. To date, our standard of care for advanced gastric cancer of combination chemotherapy and immunotherapy has a 1-year overall survival rate of 55%. Significant efforts have gone into identifying targetable alterations in gastric cancer, ultimately yielding the Fibroblast Growth Factor Receptors (FGFRs) family, specifically FGFR2 as a promising target. FGFR2 is overexpressed in GC, particularly diffuse-type GC, and is associated with poor prognostic outcomes. In recent years, there has been an increasing number of small molecule inhibitors and monoclonal antibodies targeting FGFR2 that have entered into clinical trials. Specifically for GC, these agents are currently being trialed in various phases as monotherapies or with standard-of-care treatments to make a clinically meaningful impact on what appears to be an important biological axis of GC. In this review, we outline the underlying biology of FGFR2, its putative role in GC, and the various FGFR2-targeted agents currently in clinical trials for gastric cancer patients as well as postulate some challenges in adopting these therapeutics for clinically meaningful benefit.
Assuntos
Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Neoplasias Gástricas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/terapia , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologiaRESUMO
Myo10 is an unconventional myosin that localizes to and induces filopodia, structures that are critical for growing axons. In addition to the ~240-kDa full-length Myo10, brain expresses a ~165 kDa isoform that lacks a functional motor domain and is known as headless Myo10. We and others have hypothesized that headless Myo10 acts as an endogenous dominant negative of full-length Myo10, but this hypothesis has not been tested, and the function of headless Myo10 remains unknown. We find that cortical neurons express both headless and full-length Myo10 and report the first isoform-specific localization of Myo10 in brain, which shows enrichment of headless Myo10 in regions of proliferating and migrating cells, including the embryonic ventricular zone and the postnatal rostral migratory stream. We also find that headless and full-length Myo10 are expressed in embryonic and neuronal stem cells. To directly test the function of headless and full-length Myo10, we used RNAi specific to each isoform in mouse cortical neuron cultures. Knockdown of full-length Myo10 reduces axon outgrowth, whereas knockdown of headless Myo10 increases axon outgrowth. To test whether headless Myo10 antagonizes full-length Myo10, we coexpressed both isoforms in COS-7 cells, which revealed that headless Myo10 suppresses the filopodia-inducing activity of full-length Myo10. Together, these results demonstrate that headless Myo10 can function as a negative regulator of full-length Myo10 and that the two isoforms of Myo10 have opposing roles in axon outgrowth.
Assuntos
Córtex Cerebral/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Animais , Axônios , Células COS , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Chlorocebus aethiops , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/enzimologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Miosinas , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologiaRESUMO
Pancreatic ductal adenocarcinoma (PDA) cells reprogram their transcriptional and metabolic programs to survive the nutrient-poor tumor microenvironment. Through in vivo CRISPR screening, we discovered islet-2 (ISL2) as a candidate tumor suppressor that modulates aggressive PDA growth. Notably, ISL2, a nuclear and chromatin-associated transcription factor, is epigenetically silenced in PDA tumors and high promoter DNA methylation or its reduced expression correlates with poor patient survival. The exogenous ISL2 expression or CRISPR-mediated upregulation of the endogenous loci reduces cell proliferation. Mechanistically, ISL2 regulates the expression of metabolic genes, and its depletion increases oxidative phosphorylation (OXPHOS). As such, ISL2-depleted human PDA cells are sensitive to the inhibitors of mitochondrial complex I in vitro and in vivo. Spatial transcriptomic analysis shows heterogeneous intratumoral ISL2 expression, which correlates with the expression of critical metabolic genes. These findings nominate ISL2 as a putative tumor suppressor whose inactivation leads to increased mitochondrial metabolism that may be exploitable therapeutically.
Assuntos
Carcinoma Ductal Pancreático , Proteínas com Homeodomínio LIM , Proteínas do Tecido Nervoso , Neoplasias Pancreáticas , Fatores de Transcrição , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Genes Supressores de Tumor , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genéticaRESUMO
Mitochondria undergo fission and fusion to maintain homeostasis, and tumors exhibit the dysregulation of mitochondrial dynamics. We recently demonstrated that ectopic HRasG12V promotes mitochondrial fragmentation and tumor growth through Erk phosphorylation of the mitochondrial fission GTPase Dynamin-related protein 1 (Drp1). However, the role of Drp1 in the setting of endogenous oncogenic KRas remains unknown. Here, we show that Drp1 is required for KRas-driven anchorage-independent growth in fibroblasts and patient-derived pancreatic cancer cell lines, and it promotes glycolytic flux, in part through the regulation of hexokinase 2 (HK2). Furthermore, Drp1 deletion imparts a significant survival advantage in a model of KRas-driven pancreatic cancer, and tumors exhibit a strong selective pressure against complete Drp1 deletion. Rare tumors that arise in the absence of Drp1 have restored glycolysis but exhibit defective mitochondrial metabolism. This work demonstrates that Drp1 plays dual roles in KRas-driven tumor growth: supporting both glycolysis and mitochondrial function through independent mechanisms.
Assuntos
Dinaminas/metabolismo , Dinaminas/fisiologia , Mitocôndrias/patologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Apoptose , Proliferação de Células , Dinaminas/genética , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Purpose: Patients with pancreatic ductal adenocarcinoma (PDAC) who undergo surgical resection and adjuvant chemotherapy have an expected survival of only 2 years due to disease recurrence, frequently in the liver. We investigated the role of liver macrophages in progression of PDAC micrometastases to identify adjuvant treatment strategies that could prolong survival.Experimental Design: A murine splenic injection model of hepatic micrometastatic PDAC was used with five patient-derived PDAC tumors. The impact of liver macrophages on tumor growth was assessed by (i) depleting mouse macrophages in nude mice with liposomal clodronate injection, and (ii) injecting tumor cells into nude versus NOD-scid-gamma mice. Immunohistochemistry and flow cytometry were used to measure CD47 ("don't eat me signal") expression on tumor cells and characterize macrophages in the tumor microenvironment. In vitro engulfment assays and mouse experiments were performed with CD47-blocking antibodies to assess macrophage engulfment of tumor cells, progression of micrometastases in the liver and mouse survival.Results:In vivo clodronate depletion experiments and NOD-scid-gamma mouse experiments demonstrated that liver macrophages suppress the progression of PDAC micrometastases. Five patient-derived PDAC cell lines expressed variable levels of CD47. In in vitro engulfment assays, CD47-blocking antibodies increased the efficiency of PDAC cell clearance by macrophages in a manner which correlated with CD47 receptor surface density. Treatment of mice with CD47-blocking antibodies resulted in increased time-to-progression of metastatic tumors and prolonged survival.Conclusions: These findings suggest that following surgical resection of PDAC, adjuvant immunotherapy with anti-CD47 antibody could lead to substantially improved outcomes for patients. Clin Cancer Res; 24(6); 1415-25. ©2017 AACR.
Assuntos
Antígeno CD47/antagonistas & inibidores , Imunomodulação , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Animais , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Humanos , Imuno-Histoquímica , Imunoterapia/métodos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Mitochondria are dynamic organelles that alter their organization in response to a variety of cellular cues. Mitochondria are central in many biologic processes, such as cellular bioenergetics and apoptosis, and mitochondrial network morphology can contribute to those physiologic processes. Some of the biologic processes that are in part governed by mitochondria are also commonly deregulated in cancers. Furthermore, patient tumor samples from a variety of cancers have revealed that mitochondrial dynamics machinery may be deregulated in tumors. In this review, we will discuss how commonly mutated oncogenes and their downstream effector pathways regulate the mitochondrial dynamics machinery to promote changes in mitochondrial morphology as well as the physiologic consequences of altered mitochondrial morphology for tumorigenic growth.
RESUMO
An assay was developed for determining cell division orientation on gradients. The methodology is based on permeating microfluidic devices with alkanethiols and subsequent printing of cell adhesive peptide gradient self-assembled monolayers (SAMs) for examining oriented cell divisions. To our knowledge, there has been no study examining the correlation between cell division orientations based on an underlying ligand gradient. These results implicate an important role for how the extracellular matrix may control cell division. These surfaces would allow for a range of cell behavior (polarization, migration, division, differentiation) studies on tailored biospecific gradients and as a potential biotechnological platform to assess small molecule perturbations of cell function.