Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Phage (New Rochelle) ; 4(3): 141-149, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37841386

RESUMO

Background: The antimicrobial resistance catastrophe is a growing global health threat and predicted to be worse in developing countries. Phages for Global Health (PGH) is training scientists in these regions to isolate relevant therapeutic phages for pathogenic bacteria within their locality, and thus contributing to making phage technology universally available. Materials and Methods: During the inaugural PGH workshop in East Africa, samples from Ugandan municipal sewage facilities were collected and two novel Escherichia coli lytic phages were isolated and characterized. Results: The phages, UP19 (capsid diameter ∼100 nm, contractile tail ∼120/20 nm) and UP30 (capsid diameter ∼70 nm, noncontractile tail of ∼170/20 nm), lysed ∼82% and ∼36% of the 11 clinical isolates examined, respectively. The genomes of UP19 (171.402 kb, 282 CDS) and UP30 (49.834 kb, 75 CDS) closely match the genera Dhakavirus and Tunavirus, respectively. Conclusion: The phages isolated have therapeutic potential for further development against E. coli infections.

2.
Curr Opin Virol ; 53: 101208, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35180534

RESUMO

Lower and middle-income countries seldom develop vaccines and therapeutics for their own populations and are dependent on supplies from industrialized countries, which are often hampered by financial or supply chain limitations. This has resulted in major delays in delivery with significant loss of life, as seen with the coronavirus pandemic. Since the vast majority of deaths from the antimicrobial resistance crisis are expected to occur in developing countries, there is an urgent need for in-country production of antibacterial therapies such as phages. Nationally controlled phage banks might provide such a solution since locally developed phage therapies tailored to endemic bacterial strains could offer cost-effective antibiotic alternatives.


Assuntos
Bacteriófagos , Terapia por Fagos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Farmacorresistência Bacteriana
3.
Microorganisms ; 8(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093083

RESUMO

Bacteriophages are a sustainable alternative to control pathogenic bacteria in the post-antibiotic era. Despite promising reports, there are still obstacles to phage use, notably titer stability and transport-associated expenses for applications in food and agriculture. In this study, we have developed a lyophilization approach to maintain phage titers, ensure efficacy and reduce transport costs of Campylobacter bacteriophages. Lyophilization methods were adopted with various excipients to enhance stabilization in combination with packaging options for international transport. Lyophilization of Eucampyvirinae CP30A using tryptone formed a cake that limited processing titer reduction to 0.35 ± 0.09 log10 PFU mL-1. Transmission electron microscopy revealed the initial titer reduction was associated with capsid collapse of a subpopulation. Freeze-dried phages were generally stable under refrigerated vacuum conditions and showed no significant titer changes over 3 months incubation at 4 °C (p = 0.29). Reduced stability was observed for lyophilized phages that were incubated either at 30 °C under vacuum or at 4 °C at 70% or 90% relative humidity. Refrigerated international transport and rehydration of the cake resulted in a total phage titer reduction of 0.81 ± 0.44 log10 PFU mL-1. A significantly higher titer loss was observed for phages that were not refrigerated during transport (2.03 ± 0.32 log10 PFU mL-1). We propose that lyophilization offers a convenient method to preserve and transport Campylobacter phages, with minimal titer reduction after the drying process.

4.
Ann Biomed Eng ; 48(4): 1169-1180, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31845128

RESUMO

Spray drying biologics into a powder can increase thermal stability and shelf-life relative to liquid formulations, potentially eliminating the need for cold chain infrastructure for distribution in developing countries. In this study, process modelling, microparticle engineering, and a supplemented phase diagram were used to design physically stable fully amorphous spray-dried powder capable of stabilizing biological material. A greater proportion of anti-Campylobacter bacteriophage CP30A remained biologically active after spray drying using excipient formulations containing trehalose and a high glass transition temperature amorphous shell former, either trileucine or pullulan, as compared to the commonly used crystalline shell former, leucine, or a low glass transition temperature amorphous shell former, pluronic F-68. Particle formation models suggest that the stabilization was achieved by protecting the bacteriophages against the main inactivating stress, desiccation, at the surface. The most promising formulation contained a combination of trileucine and trehalose for which the combined effects of feedstock preparation, spray drying, and 1-month dry room temperature storage resulted in a titer reduction of only 0.6 ± 0.1 log10(PFU mL-1). The proposed high glass transition temperature amorphous formulation platform may be advantageous for stabilizing biologics in other spray drying applications in the biomedical engineering industry.


Assuntos
Bacteriófagos , Campylobacter/virologia , Glucanos , Oligopeptídeos , Dessecação , Excipientes , Pós , Temperatura , Trealose , Vitrificação
5.
Int J Pharm ; 569: 118601, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31394183

RESUMO

Campylobacter jejuni is a leading cause of foodborne illness globally. In this study, a spray drying and packaging process was developed to produce a thermally-stable dry powder containing bacteriophages that retains biological activity against C. jejuni after long distance shipping at ambient temperature. Spray drying using a twin-fluid atomizer resulted in significantly less (p < 0.05) titer reduction than spray drying using a vibrating mesh nebulizer. The use of centrifugation and dilution of filtered bacteriophage lysate in the formulation step resulted in a significantly greater (p < 0.05) proportion of bacteriophages remaining active relative to use of no centrifugation and dilution. The spray-dried bacteriophage powder generated using leucine and trehalose as excipients was flowable, non-cohesive, and exhibited a high manufacturing yield. The powder retained its titer with no significant differences (p > 0.05) in biological activity after storage in suitable packaging for at least 3 weeks at room temperature and after ambient temperature shipping a total distance of approximately 19,800 km, including with a 38 °C temperature excursion. The bacteriophage powder therefore appears suitable for global distribution without the need for cold chain infrastructure.


Assuntos
Bacteriófagos , Campylobacter/virologia , Química Farmacêutica , Dessecação , Excipientes/química , Leucina/química , Pós , Trealose/química
6.
Viruses ; 10(7)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29954053

RESUMO

The antimicrobial resistance (AMR) crisis and HIV/AIDS epidemic exhibit many parallels. In both, infectious diseases have caused millions of deaths worldwide, with AMR expected to kill even more people each year than HIV/AIDS did at its peak. In addition, both have required or will require new classes of drugs for control. For HIV/AIDS, development of vital antiretroviral drugs (ARVs) was accomplished in several stages: expanding public awareness about the disease, gathering commitment from the international community to tackle the problem, and eventually establishing policies and global funds to deliver new therapeutics. For AMR, the pursuit of new antimicrobials appears to be following a similar trajectory. This paper examines how lessons and processes leading to ARVs might be applied to developing AMR drugs, in particular bacteriophages (phages). These possess many essential characteristics: inexpensive manufacture, rapid drug development, and a ready means to prevent phage-resistant microbes from emerging. However, the broad application of phage-based products has yet to be fully demonstrated, and will require both international coordination and modified regulatory policies.


Assuntos
Anti-Infecciosos/uso terapêutico , Países em Desenvolvimento , Resistência Microbiana a Medicamentos , Epidemias/prevenção & controle , Terapia por Fagos , África/epidemiologia , Fármacos Anti-HIV/uso terapêutico , Anti-Infecciosos/economia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Descoberta de Drogas , Saúde Global , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Humanos
8.
Cancer Res ; 64(23): 8643-50, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15574772

RESUMO

Tumor growth, tumor angiogenesis, and vascular endothelial growth factor (VEGF)-specific angiogenesis are all enhanced in beta(3)-integrin-null mice. Furthermore, endothelial cells isolated from beta(3)-null mice show elevated levels of Flk1 (VEGF receptor 2) expression, suggesting that beta(3)-integrin can control the amplitude of VEGF responses by controlling Flk1 levels or activity. We now show that Flk1 signaling is required for the enhanced tumor growth and angiogenesis seen in beta(3)-null mice. Moreover, beta(3)-null endothelial cells exhibit enhanced migration and proliferation in response to VEGF in vitro, and this phenotype requires Flk1 signaling. Upon VEGF stimulation, beta(3)-null endothelial cells exhibit higher levels of phosphorylated Flk1 and extracellular-related kinases 1 and 2 than wild-type endothelial cells. Furthermore, signaling via ERK1/2 is required to mediate the elevated responses to VEGF observed in beta(3)-null endothelial cells and aortic rings in vitro. These data confirm that VEGF signaling via Flk1 is enhanced in beta(3)-integrin-deficient mice and suggests that this increase may mediate the enhanced angiogenesis and tumor growth observed in these mice in vivo.


Assuntos
Integrina beta3/fisiologia , Neoplasias Experimentais/irrigação sanguínea , Neovascularização Patológica/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Processos de Crescimento Celular/fisiologia , Movimento Celular/fisiologia , Endotélio Vascular/crescimento & desenvolvimento , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Integrina alfaVbeta3/fisiologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/metabolismo , Masculino , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Cancer Cell ; 23(5): 594-602, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23680146

RESUMO

ATP competitive inhibitors of the BRAF(V600E) oncogene paradoxically activate downstream signaling in cells bearing wild-type BRAF (BRAF(WT)). In this study, we investigate the biochemical mechanism of wild-type RAF (RAF(WT)) activation by multiple catalytic inhibitors using kinetic analysis of purified BRAF(V600E) and RAF(WT) enzymes. We show that activation of RAF(WT) is ATP dependent and directly linked to RAF kinase activity. These data support a mechanism involving inhibitory autophosphorylation of RAF's phosphate-binding loop that, when disrupted either through pharmacologic or genetic alterations, results in activation of RAF and the mitogen-activated protein kinase (MAPK) pathway. This mechanism accounts not only for compound-mediated activation of the MAPK pathway in BRAF(WT) cells but also offers a biochemical mechanism for BRAF oncogenesis.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases raf/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Linhagem Celular Tumoral , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/fisiologia , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/fisiologia , Quinases raf/genética , Quinases raf/metabolismo
11.
Mol Cancer Ther ; 11(2): 317-28, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22188813

RESUMO

Following the discovery of NVP-BEZ235, our first dual pan-PI3K/mTOR clinical compound, we sought to identify additional phosphoinositide 3-kinase (PI3K) inhibitors from different chemical classes with a different selectivity profile. The key to achieve these objectives was to couple a structure-based design approach with intensive pharmacologic evaluation of selected compounds during the medicinal chemistry optimization process. Here, we report on the biologic characterization of the 2-morpholino pyrimidine derivative pan-PI3K inhibitor NVP-BKM120. This compound inhibits all four class I PI3K isoforms in biochemical assays with at least 50-fold selectivity against other protein kinases. The compound is also active against the most common somatic PI3Kα mutations but does not significantly inhibit the related class III (Vps34) and class IV (mTOR, DNA-PK) PI3K kinases. Consistent with its mechanism of action, NVP-BKM120 decreases the cellular levels of p-Akt in mechanistic models and relevant tumor cell lines, as well as downstream effectors in a concentration-dependent and pathway-specific manner. Tested in a panel of 353 cell lines, NVP-BKM120 exhibited preferential inhibition of tumor cells bearing PIK3CA mutations, in contrast to either KRAS or PTEN mutant models. NVP-BKM120 shows dose-dependent in vivo pharmacodynamic activity as measured by significant inhibition of p-Akt and tumor growth inhibition in mechanistic xenograft models. NVP-BKM120 behaves synergistically when combined with either targeted agents such as MEK or HER2 inhibitors or with cytotoxic agents such as docetaxel or temozolomide. The pharmacological, biologic, and preclinical safety profile of NVP-BKM120 supports its clinical development and the compound is undergoing phase II clinical trials in patients with cancer.


Assuntos
Aminopiridinas/farmacologia , Morfolinas/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Aminopiridinas/química , Aminopiridinas/farmacocinética , Animais , Disponibilidade Biológica , Western Blotting , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células HCT116 , Células HT29 , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Morfolinas/química , Morfolinas/farmacocinética , Mutação , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinase/química , Fosfatidilinositol 3-Quinase/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA