Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nucleic Acids Res ; 51(10): 5177-5192, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070196

RESUMO

TbMex67 is the major mRNA export factor known to date in trypanosomes, forming part of the docking platform within the nuclear pore. To explore its role in co-transcriptional mRNA export, recently reported in Trypanosoma brucei, pulse labelling of nascent RNAs with 5-ethynyl uridine (5-EU) was performed with cells depleted of TbMex67 and complemented with a dominant-negative mutant (TbMex67-DN). RNA polymerase (Pol) II transcription was unaffected, but the procyclin loci, which encode mRNAs transcribed by Pol I from internal sites on chromosomes 6 and 10, showed increased levels of 5-EU incorporation. This was due to Pol I readthrough transcription, which proceeded beyond the procyclin and procyclin-associated genes up to the Pol II transcription start site on the opposite strand. Complementation by TbMex67-DN also increased Pol I-dependent formation of R-loops and γ-histone 2A foci. The DN mutant exhibited reduced nuclear localisation and binding to chromatin compared to wild-type TbMex67. Together with its interaction with chromatin remodelling factor TbRRM1 and Pol II, and transcription-dependent association of Pol II with nucleoporins, our findings support a role for TbMex67 in connecting transcription and export in T. brucei. In addition, TbMex67 stalls readthrough by Pol I in specific contexts, thereby limiting R-loop formation and replication stress.


Assuntos
Proteínas de Protozoários , RNA Polimerase I , Trypanosoma brucei brucei , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473953

RESUMO

Cryptosporidium parvum is an apicomplexan parasite causing persistent diarrhea in humans and animals. Issuing from target-based drug development, calcium-dependent protein kinase 1 inhibitors, collectively named bumped kinase inhibitors (BKIs), with excellent efficacies in vitro and in vivo have been generated. Some BKIs including BKI-1748 share a core structure with similarities to the first-generation antiprotozoal drug quinine, which is known to exert notorious side effects. Unlike quinine, BKI-1748 rapidly interfered with C. parvum proliferation in the human colon tumor (HCT) cell line HCT-8 cells and caused dramatic effects on the parasite ultrastructure. To identify putative BKI targets in C. parvum and in host cells, we performed differential affinity chromatography with cell-free extracts from non-infected and infected HCT-8 cells using BKI-1748 and quinine epoxy-activated sepharose columns followed by mass spectrometry. C. parvum proteins of interest were identified in eluates from columns coupled to BKI-1748, or in eluates from both BKI-1748 and quinine columns. However, no C. parvum proteins could be identified binding exclusively to BKI-1748. In contrast, 25 BKI-1748-specific binding proteins originating from HCT-8 cells were detected. Moreover, 29 C. parvum and 224 host cell proteins were identified in both BKI-1748 as well as in quinine eluates. In both C. parvum and host cells, the largest subset of binding proteins was involved in RNA binding and modification, with a focus on ribosomal proteins and proteins involved in RNA splicing. These findings extend previous results, showing that BKI-1748 interacts with putative targets involved in common, essential pathways such as translation and RNA processing.


Assuntos
Antineoplásicos , Antiprotozoários , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Humanos , Quinina/farmacologia , Antiprotozoários/farmacologia , Antineoplásicos/farmacologia
3.
PLoS Pathog ; 17(1): e1009239, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493187

RESUMO

The transition between hosts is a challenge for digenetic parasites as it is unpredictable. For Trypanosoma brucei subspecies, which are disseminated by tsetse flies, adaptation to the new host requires differentiation of stumpy forms picked up from mammals to procyclic forms in the fly midgut. Here we show that the Alba-domain protein Alba3 is not essential for mammalian slender forms, nor is it required for differentiation of slender to stumpy forms in culture or in mice. It is crucial, however, for the development of T. brucei procyclic forms during the host transition. While steady state levels of mRNAs in differentiating cells are barely affected by the loss of Alba3, there are major repercussions for the proteome. Mechanistically, Alba3 aids differentiation by rapidly releasing stumpy forms from translational repression and stimulating polysome formation. In its absence, parasites fail to remodel their proteome appropriately, lack components of the mitochondrial respiratory chain and show reduced infection of tsetse. Interestingly, Alba3 and the closely related Alba4 are functionally redundant in slender forms, but Alba4 cannot compensate for the lack of Alba3 during differentiation from the stumpy to the procyclic form. We postulate that Alba-domain proteins play similar roles in regulating translation in other protozoan parasites, in particular during life-cycle and host transitions.


Assuntos
Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Moscas Tsé-Tsé/parasitologia , Adaptação Fisiológica , Animais , Ciclo Celular , Diferenciação Celular , Feminino , Técnicas de Inativação de Genes , Estágios do Ciclo de Vida , Mamíferos , Camundongos , Polirribossomos/metabolismo , Domínios Proteicos , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/fisiologia
4.
J Biol Chem ; 296: 100566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33745971

RESUMO

Trypanosoma brucei is a species of unicellular parasite that can cause severe diseases in livestock and humans, including African trypanosomiasis and Chagas disease. Adaptation to diverse environments and changes in nutritional conditions is essential for T. brucei to establish an infection when changing hosts or during invasion of different host tissues. One such adaptation is the ability of T. brucei to rapidly switch its energy metabolism from glucose metabolism in the mammalian blood to proline catabolism in the insect stages and vice versa. However, the mechanisms that support the parasite's response to nutrient availability remain unclear. Using RNAseq and qRT-PCR, we investigated the response of T. brucei to amino acid or glucose starvation and found increased mRNA levels of several amino acid transporters, including all genes of the amino acid transporter AAT7-B subgroup. Functional characterization revealed that AAT7-B members are plasma membrane-localized in T. brucei and when expressed in Saccharomyces cerevisiae supported the uptake of proline, alanine, and cysteine, while other amino acids were poorly recognized. All AAT7-B members showed a preference for proline, which is transported with high or low affinity. RNAi-mediated AAT7-B downregulation resulted in a reduction of intracellular proline concentrations and growth arrest under low proline availability in cultured procyclic form parasites. Taken together, these results suggest a role of AAT7-B transporters in the response of T. brucei to proline starvation and proline catabolism.


Assuntos
Alanina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Nutrientes/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Trypanosoma brucei brucei/fisiologia
5.
BMC Genomics ; 22(1): 253, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836668

RESUMO

BACKGROUND: Aedes aegypti mosquito, the principal global vector of arboviral diseases, lays eggs and undergoes larval and pupal development to become adult mosquitoes in fresh water (FW). It has recently been observed to develop in coastal brackish water (BW) habitats of up to 50% sea water, and such salinity tolerance shown to be an inheritable trait. Genomics of salinity tolerance in Ae. aegypti has not been previously studied, but it is of fundamental biological interest and important for controlling arboviral diseases in the context of rising sea levels increasing coastal ground water salinity. RESULTS: BW- and FW-Ae. aegypti were compared by RNA-seq analysis on the gut, anal papillae and rest of the carcass in fourth instar larvae (L4), proteomics of cuticles shed when L4 metamorphose into pupae, and transmission electron microscopy of cuticles in L4 and adults. Genes for specific cuticle proteins, signalling proteins, moulting hormone-related proteins, membrane transporters, enzymes involved in cuticle metabolism, and cytochrome P450 showed different mRNA levels in BW and FW L4 tissues. The salinity-tolerant Ae. aegypti were also characterized by altered L4 cuticle proteomics and changes in cuticle ultrastructure of L4 and adults. CONCLUSIONS: The findings provide new information on molecular and ultrastructural changes associated with salinity adaptation in FW mosquitoes. Changes in cuticles of larvae and adults of salinity-tolerant Ae. aegypti are expected to reduce the efficacy of insecticides used for controlling arboviral diseases. Expansion of coastal BW habitats and their neglect for control measures facilitates the spread of salinity-tolerant Ae. aegypti and genes for salinity tolerance. The transmission of arboviral diseases can therefore be amplified in multiple ways by salinity-tolerant Ae. aegypti and requires appropriate mitigating measures. The findings in Ae. aegypti have attendant implications for the development of salinity tolerance in other fresh water mosquito vectors and the diseases they transmit.


Assuntos
Aedes , Aedes/genética , Animais , Larva , Proteômica , Salinidade , Elevação do Nível do Mar , Transcriptoma
6.
Nucleic Acids Res ; 47(4): 1725-1739, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30544263

RESUMO

The path from DNA to RNA to protein in eukaryotes is guided by a series of factors linking transcription, mRNA export and translation. Many of these are conserved from yeast to humans. Trypanosomatids, which diverged early in the eukaryotic lineage, exhibit unusual features such as polycistronic transcription and trans-splicing of all messenger RNAs. They possess basal transcription factors, but lack recognisable orthologues of many factors required for transcription elongation and mRNA export. We show that retrotransposon hotspot (RHS) proteins fulfil some of these functions and that their depletion globally impairs nascent RNA synthesis by RNA polymerase II. Three sub-families are part of a coordinated process in which RHS6 is most closely associated with chromatin, RHS4 is part of the Pol II complex and RHS2 connects transcription with the translation machinery. In summary, our results show that the components of eukaryotic transcription are far from being universal, and reveal unsuspected plasticity in the course of evolution.


Assuntos
Proteínas de Protozoários/genética , RNA/biossíntese , Retroelementos/genética , Transcrição Gênica , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/genética , Cromatina/genética , DNA de Protozoário/genética , Eucariotos/genética , Variação Genética/genética , Humanos , Regiões Promotoras Genéticas/genética , RNA/genética , RNA Polimerase II/genética , Trypanosoma brucei brucei/genética
7.
BMC Genomics ; 19(1): 227, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29606092

RESUMO

BACKGROUND: Trypanosoma brucei brucei, the parasite causing Nagana in domestic animals, is closely related to the parasites causing sleeping sickness, but does not infect humans. In addition to its importance as a pathogen, the relative ease of genetic manipulation and an innate capacity for RNAi extend its use as a model organism in cell and infection biology. During its development in its mammalian and insect (tsetse fly) hosts, T. b. brucei passes through several different life-cycle stages. There are currently four life-cycle stages that can be cultured: slender forms and stumpy forms, which are equivalent to forms found in the mammal, and early and late procyclic forms, which are equivalent to forms in the tsetse midgut. Early procyclic forms show coordinated group movement (social motility) on semi-solid surfaces, whereas late procyclic forms do not. RESULTS: RNA-Seq was performed on biological replicates of each life-cycle stage. These constitute the first datasets for culture-derived slender and stumpy bloodstream forms and early and late procyclic forms. Expression profiles confirmed that genes known to be stage-regulated in the animal and insect hosts were also regulated in culture. Sequence reads of 100-125 bases provided sufficient precision to uncover differential expression of closely related genes. More than 100 transcripts showed peak expression in stumpy forms, including adenylate cyclases and several components of inositol metabolism. Early and late procyclic forms showed differential expression of 73 transcripts, a number of which encoded proteins that were previously shown to be stage-regulated. Moreover, two adenylate cyclases previously shown to reduce social motility are up-regulated in late procyclic forms. CONCLUSIONS: This study validates the use of cultured bloodstream forms as alternatives to animal-derived parasites and yields new markers for all four stages. In addition to underpinning recent findings that early and late procyclic forms are distinct life-cycle stages, it could provide insights into the reasons for their different biological properties.


Assuntos
Proteínas de Protozoários/genética , Análise de Sequência de RNA/métodos , Trypanosoma brucei brucei/crescimento & desenvolvimento , Moscas Tsé-Tsé/parasitologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Estágios do Ciclo de Vida , Trypanosoma brucei brucei/genética
8.
Nucleic Acids Res ; 43(9): 4491-504, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25873624

RESUMO

Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5'UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export.


Assuntos
Núcleo Celular/metabolismo , Carioferinas/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Protozoários/fisiologia , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Regiões 5' não Traduzidas , Transporte Ativo do Núcleo Celular , Carioferinas/antagonistas & inibidores , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Ativação Transcricional , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteína Exportina 1
9.
Mol Microbiol ; 88(4): 827-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23617823

RESUMO

Different life-cycle stages of Trypanosoma brucei are characterized by stage-specific glycoprotein coats. GPEET procyclin, the major surface protein of early procyclic (insect midgut) forms, is transcribed in the nucleolus by RNA polymerase I as part of a polycistronic precursor that is processed to monocistronic mRNAs. In culture, when differentiation to late procyclic forms is triggered by removal of glycerol, the precursor is still transcribed, but accumulation of GPEET mRNA is prevented by a glycerol-responsive element in the 3' UTR. A genome-wide RNAi screen for persistent expression of GPEET in glycerol-free medium identified a novel protein, NRG1 (Nucleolar Regulator of GPEET 1), as a negative regulator. NRG1 associates with GPEET mRNA and with several nucleolar proteins. These include two PUF proteins, TbPUF7 and TbPUF10, and BOP1, a protein required for rRNA processing in other organisms. RNAi against each of these components prolonged or even increased GPEET expression in the absence of glycerol as well as causing a significant reduction in 5.8S rRNA and its immediate precursor. These results indicate that components of a complex used for rRNA maturation can have an additional role in regulating mRNAs that originate in the nucleolus.


Assuntos
Regulação da Expressão Gênica , Glicoproteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Trypanosoma brucei brucei/genética , Proteínas Nucleares/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Trypanosoma brucei brucei/metabolismo
10.
mBio ; 15(6): e0341223, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38747635

RESUMO

Theileria annulata is a tick-transmitted apicomplexan parasite that gained the unique ability among parasitic eukaryotes to transform its host cell, inducing a fatal cancer-like disease in cattle. Understanding the mechanistic interplay between the host cell and malignant Theileria species that drives this transformation requires the identification of responsible parasite effector proteins. In this study, we used TurboID-based proximity labeling, which unbiasedly identified secreted parasite proteins within host cell compartments. By fusing TurboID to nuclear export or localization signals, we biotinylated proteins in the vicinity of the ligase enzyme in the nucleus or cytoplasm of infected macrophages, followed by mass spectrometry analysis. Our approach revealed with high confidence nine nuclear and four cytosolic candidate parasite proteins within the host cell compartments, eight of which had no orthologs in non-transforming T. orientalis. Strikingly, all eight of these proteins are predicted to be highly intrinsically disordered proteins. We discovered a novel tandem arrayed protein family, nuclear intrinsically disordered proteins (NIDP) 1-4, featuring diverse functions predicted by conserved protein domains. Particularly, NIDP2 exhibited a biphasic host cell-cycle-dependent localization, interacting with the EB1/CD2AP/CLASP1 parasite membrane complex at the schizont surface and the tumor suppressor stromal antigen 2 (STAG2), a cohesion complex subunit, in the host nucleus. In addition to STAG2, numerous NIDP2-associated host nuclear proteins implicated in various cancers were identified, shedding light on the potential role of the T. annulata exported protein family NIDP in host cell transformation and cancer-related pathways.IMPORTANCETurboID proximity labeling was used to identify secreted proteins of Theileria annulata, an apicomplexan parasite responsible for a fatal, proliferative disorder in cattle that represents a significant socio-economic burden in North Africa, central Asia, and India. Our investigation has provided important insights into the unique host-parasite interaction, revealing secreted parasite proteins characterized by intrinsically disordered protein structures. Remarkably, these proteins are conspicuously absent in non-transforming Theileria species, strongly suggesting their central role in the transformative processes within host cells. Our study identified a novel tandem arrayed protein family, with nuclear intrinsically disordered protein 2 emerging as a central player interacting with established tumor genes. Significantly, this work represents the first unbiased screening for exported proteins in Theileria and contributes essential insights into the molecular intricacies behind the malignant transformation of immune cells.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas de Protozoários , Theileria annulata , Theileria annulata/genética , Theileria annulata/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Animais , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/química , Bovinos , Interações Hospedeiro-Parasita , Macrófagos/parasitologia , Theileriose/parasitologia , Theileriose/metabolismo , Núcleo Celular/metabolismo
11.
mBio ; 14(5): e0185423, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37795988

RESUMO

IMPORTANCE: Trypanosoma brucei is the unicellular parasite that causes African sleeping sickness and nagana disease in livestock. The parasite has a complex life cycle consisting of several developmental forms in the human and tsetse fly insect vector. Both the mammalian and insect hosts provide different nutritional environments, so T. brucei must adapt its metabolism to promote its survival and to complete its life cycle. As T. brucei is transmitted from the human host to the fly, the parasite must regulate its mitochondrial gene expression through a process called uridine insertion/deletion editing to achieve mRNAs capable of being translated into functional respiratory chain proteins required for energy production in the insect host. Therefore, it is essential to understand the mechanisms by which T. brucei regulates mitochondrial gene expression during transmission from the mammalian host to the insect vector.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Temperatura , Moscas Tsé-Tsé/parasitologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Mamíferos/metabolismo
12.
PLoS Pathog ; 6(12): e1001232, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21179246

RESUMO

Parasitic protozoa such as the apicomplexan Toxoplasma gondii progress through their life cycle in response to stimuli in the environment or host organism. Very little is known about how proliferating tachyzoites reprogram their expressed genome in response to stresses that prompt development into latent bradyzoite cysts. We have previously linked histone acetylation with the expression of stage-specific genes, but the factors involved remain to be determined. We sought to determine if GCN5, which operates as a transcriptional co-activator by virtue of its histone acetyltransferase (HAT) activity, contributed to stress-induced changes in gene expression in Toxoplasma. In contrast to other lower eukaryotes, Toxoplasma has duplicated its GCN5 lysine acetyltransferase (KAT). Disruption of the gene encoding for TgGCN5-A in type I RH strain did not produce a severe phenotype under normal culture conditions, but here we show that the TgGCN5-A null mutant is deficient in responding to alkaline pH, a common stress used to induce bradyzoite differentiation in vitro. We performed a genome-wide analysis of the Toxoplasma transcriptional response to alkaline pH stress, finding that parasites deleted for TgGCN5-A fail to up-regulate 74% of the stress response genes that are induced 2-fold or more in wild-type. Using chromatin immunoprecipitation, we verify an enrichment of TgGCN5-A at the upstream regions of genes activated by alkaline pH exposure. The TgGCN5-A knockout is also incapable of up-regulating key marker genes expressed during development of the latent cyst form, and is impaired in its ability to recover from alkaline stress. Complementation of the TgGCN5-A knockout restores the expression of these stress-induced genes and reverses the stress recovery defect. These results establish TgGCN5-A as a major contributor to the alkaline stress response in RH strain Toxoplasma.


Assuntos
Acetiltransferases/fisiologia , Cistos/genética , Estresse Fisiológico , Toxoplasma/enzimologia , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Lisina , Proteínas de Protozoários/fisiologia , Toxoplasma/metabolismo
13.
Nat Commun ; 13(1): 603, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105902

RESUMO

The collective movement of African trypanosomes on semi-solid surfaces, known as social motility, is presumed to be due to migration factors and repellents released by the parasites. Here we show that procyclic (insect midgut) forms acidify their environment as a consequence of glucose metabolism, generating pH gradients by diffusion. Early and late procyclic forms exhibit self-organising properties on agarose plates. While early procyclic forms are repelled by acid and migrate outwards, late procyclic forms remain at the inoculation site. Furthermore, trypanosomes respond to exogenously formed pH gradients, with both early and late procyclic forms being attracted to alkali. pH taxis is mediated by multiple cyclic AMP effectors: deletion of one copy of adenylate cyclase ACP5, or both copies of the cyclic AMP response protein CARP3, abrogates the response to acid, while deletion of phosphodiesterase PDEB1 completely abolishes pH taxis. The ability to sense pH is biologically relevant as trypanosomes experience large changes as they migrate through their tsetse host. Supporting this, a CARP3 null mutant is severely compromised in its ability to establish infections in flies. Based on these findings, we propose that the expanded family of adenylate cyclases in trypanosomes might govern other chemotactic responses in their two hosts.


Assuntos
Metabolismo dos Carboidratos , AMP Cíclico/metabolismo , Glucose/metabolismo , Transdução de Sinais , Resposta Táctica , Trypanosoma/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases , Animais , Sistema Digestório , Concentração de Íons de Hidrogênio , Insetos , Proteínas de Protozoários , Fosfatase Ácida Resistente a Tartarato
14.
J Biol Chem ; 285(15): 11154-61, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20159970

RESUMO

The MYST family of lysine acetyltransferases (KATs) function in a wide variety of cellular operations, including gene regulation and the DNA damage response. Here we report the characterization of the second MYST family KAT in the protozoan parasite Toxoplasma gondii (TgMYST-B). Toxoplasma causes birth defects and is an opportunistic pathogen in the immunocompromised, the latter due to its ability to convert into a latent cyst (bradyzoite). We demonstrate that TgMYST-B can gain access to the parasite nucleus and acetylate histones. Overexpression of recombinant, tagged TgMYST-B reduces growth rate in vitro and confers protection from a DNA-alkylating agent. Expression of mutant TgMYST-B produced no growth defect and failed to protect against DNA damage. We demonstrate that cells overexpressing TgMYST-B have increased levels of ataxia telangiectasia mutated (ATM) kinase and phosphorylated H2AX and that TgMYST-B localizes to the ATM kinase gene. Pharmacological inhibitors of ATM kinase or KATs reverse the slow growth phenotype seen in parasites overexpressing TgMYST-B. These studies are the first to show that a MYST KAT contributes to ATM kinase gene expression, further illuminating the mechanism of how ATM kinase is up-regulated to respond to DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Cromatina/química , Reparo do DNA , Epigênese Genética , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/metabolismo
15.
PLoS Negl Trop Dis ; 15(9): e0009504, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543277

RESUMO

Trypanosoma brucei ssp., unicellular parasites causing human and animal trypanosomiasis, are transmitted between mammals by tsetse flies. Periodic changes in variant surface glycoproteins (VSG), which form the parasite coat in the mammal, allow them to evade the host immune response. Different isolates of T. brucei show heterogeneity in their repertoires of VSG genes and have single nucleotide polymorphisms and indels that can impact on genome editing. T. brucei brucei EATRO1125 (AnTaR1 serodeme) is an isolate that is used increasingly often because it is pleomorphic in mammals and fly transmissible, two characteristics that have been lost by the most commonly used laboratory stocks. We present a genome assembly of EATRO1125, including contigs for the intermediate chromosomes and minichromosomes that serve as repositories of VSG genes. In addition, de novo transcriptome assemblies were performed using Illumina sequences from tsetse-derived trypanosomes. Reads of 150 bases enabled closely related members of multigene families to be discriminated. This revealed that the transcriptome of midgut-derived parasites is dynamic, starting with the expression of high affinity hexose transporters and glycolytic enzymes and then switching to proline uptake and catabolism. These changes resemble the transition from early to late procyclic forms in culture. Further metabolic reprogramming, including upregulation of tricarboxylic acid cycle enzymes, occurs in the proventriculus. Many transcripts upregulated in the salivary glands encode surface proteins, among them 7 metacyclic VSGs, multiple BARPs and GCS1/HAP2, a marker for gametes. A novel family of transmembrane proteins, containing polythreonine stretches that are predicted to be O-glycosylation sites, was also identified. Finally, RNA-Seq data were used to create an optimised annotation file with 5' and 3' untranslated regions accurately mapped for 9302 genes. We anticipate that this will be of use in identifying transcripts obtained by single cell sequencing technologies.


Assuntos
DNA de Protozoário/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Insetos Vetores/parasitologia , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/fisiologia , Moscas Tsé-Tsé/parasitologia , Animais , Metabolismo Energético , Perfilação da Expressão Gênica , Genoma de Protozoário , Interações Hospedeiro-Parasita , Proteínas de Protozoários/genética , RNA-Seq , Glândulas Salivares/parasitologia
16.
Exp Parasitol ; 119(4): 475-482, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18442817

RESUMO

The metacestode (larval) stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), a mainly hepatic disease characterized by continuous asexual proliferation of metacestodes by exogenous budding, resulting in the tumor-like, infiltrative growth of the parasite lesion. Current chemotherapeutical treatment of AE relies on the use of benzimidazoles (albendazole, mebendazole), but these drugs act parasitostatic rather than parasitocidal, and in case of side effects such as liver toxicity, patients are left without valuable alternatives. 2-ME2 is a natural metabolite of estradiol, with a documented anti-angiogenic and broad spectrum anti-tumour activity. Treatments of in vitro cultured E. multilocularis metacestodes with 2-ME2 (2-10 microM) showed that the drug has an adverse effect on parasite viability. First, 2-ME in vitro treatment downscaled the transcription of the 14-3-3-pro-tumorogenic zeta-isoform in E. multilocularis metacestodes. Second, scanning and transmission electron microscopy showed that the germinal layer of E. multilocularis metacestodes was dramatically damaged following 2-ME2-treatment, and the effect was dose-dependent. Similar results were obtained with E. granulosus metacestodes. Bioassays were performed in mice injected with 2-ME2-treated and albendazole-treated metacestodes, or parasites-treated with both 2-ME and albendazole in combination. These assays indicated that, despite inducing considerable damage in vitro, neither of the drugs was capable of exerting a true parasiticidal effect, but best results were achieved with a combination of both compounds. In vivo treatment in E. multilocularis-infected mice for a period of 6 weeks showed that a combined 2-ME2/albendazole based treatment lead to a reduction in parasite weight, but the results did not show statistical difference from the application of albendazole alone.


Assuntos
Albendazol/farmacologia , Anti-Helmínticos/farmacologia , Equinococose Hepática/tratamento farmacológico , Echinococcus multilocularis/efeitos dos fármacos , Estradiol/análogos & derivados , Moduladores de Tubulina/farmacologia , 2-Metoxiestradiol , Albendazol/uso terapêutico , Animais , Anti-Helmínticos/uso terapêutico , Bioensaio , Quimioterapia Combinada , Equinococose Hepática/parasitologia , Echinococcus multilocularis/ultraestrutura , Estradiol/farmacologia , Estradiol/uso terapêutico , Feminino , Larva/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Ovinos , Moduladores de Tubulina/uso terapêutico
17.
Int J Parasitol ; 37(10): 1143-52, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17481636

RESUMO

Neospora caninum represents an important pathogen causing stillbirth and abortion in cattle and neuromuscular disease in dogs. Nitazoxanide (NTZ) and its deacetylated metabolite tizoxanide (TIZ) are nitro-thiazolyl-salicylamide drugs with a broad-spectrum anti-parasitic activity in vitro and in vivo. In order to generate compounds potentially applicable in food and breeding animals, the nitro group was removed, and the thiazole-moiety was modified by other functional groups. We had shown earlier that replacement of the nitro-group by a bromo-moiety did not notably affect in vitro efficacy of the drugs against N. caninum. In this study we report on the characterization of two bromo-derivatives, namely Rm4822 and its de-acetylated putative metabolite Rm4847 in relation to the nitro-compounds NTZ and TIZ. IC(50) values for proliferation inhibition were 4.23 and 4.14 microM for NTZ and TIZ, and 14.75 and 13.68 microM for Rm4822 and Rm4847, respectively. Complete inhibition (IC(99)) was achieved at 19.52 and 22.38 microM for NTZ and TIZ, and 18.21 and 17.66 microM for Rm4822 and Rm4847, respectively. However, in order to exert a true parasiticidal effect in vitro, continuous culture of infected fibroblasts in the presence of the bromo-thiazolide Rm4847 was required for a period of 3 days, while the nitro-compound TIZ required 5 days continuous drug exposure. Both thiazolides induced rapid egress of N. caninum tachyzoites from their host cells, and egress was inhibited by the cell membrane permeable Ca(2+)-chelator BAPTA-AM. Host cell entry by N. caninum tachyzoites was inhibited by Rm4847 but not by TIZ. Upon release from their host cells, TIZ-treated parasites remained associated with the fibroblast monolayer, re-invaded neighboring host cells and resumed proliferation in the absence of the drug. In contrast, Rm4847 inhibited host cell invasion and respective treated tachyzoites did not proliferate further. This demonstrated that bromo- and nitro-thiazolides exhibit differential effects against the intracellular protozoan N. caninum and bromo-thiazolides could represent a valuable alternative to the nitro-thiazolyl-salicylamide drugs.


Assuntos
Antiprotozoários/farmacologia , Neospora/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Antiprotozoários/química , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/parasitologia , Humanos , Estrutura Molecular , Tiazóis/química
18.
Mol Biochem Parasitol ; 217: 16-18, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28843782

RESUMO

We provide a simple protocol enabling cyclical transmission of Trypanosoma brucei brucei to be performed without the need for mammals. These procedures have two advantages: they are in line with 3R principles of animal use - replace, refine, reduce - and may enable more laboratories to study the complete life cycle.


Assuntos
Trypanosoma brucei brucei/fisiologia , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão , Animais , Modelos Animais de Doenças , Estágios do Ciclo de Vida , Roedores/parasitologia , Glândulas Salivares/parasitologia , Moscas Tsé-Tsé/parasitologia
19.
Curr Opin Microbiol ; 32: 26-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27131101

RESUMO

African trypanosomes, which divide their life cycle between mammals and tsetse flies, are confronted with environments that differ widely in temperature, nutrient availability and host responses to infection. In particular, since trypanosomes cannot predict when they will be transmitted between hosts, it is vital for them to be able to sense and adapt to their milieu. Thanks to technical advances, significant progress has been made in understanding how the parasites perceive external stimuli and react to them. There is also a growing awareness that trypanosomes use a variety of mechanisms to exchange information with each other, thereby enhancing their chances of survival.


Assuntos
Meio Ambiente , Interações Hospedeiro-Patógeno/fisiologia , Estágios do Ciclo de Vida/fisiologia , Mamíferos/parasitologia , Trypanosoma brucei gambiense/fisiologia , Trypanosoma brucei rhodesiense/fisiologia , Moscas Tsé-Tsé/parasitologia , Animais , Insetos Vetores/parasitologia , Percepção de Quorum/fisiologia , Trypanosoma brucei brucei/patogenicidade , Trypanosoma brucei gambiense/patogenicidade , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/parasitologia
20.
Int J Parasitol ; 35(13): 1459-72, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16129440

RESUMO

We have previously shown that treatment of Neospora caninum tachyzoites with the aspartyl protease inhibitor pepstatin A reduces host cell invasion [Naguleswaran, A., Muller, N., Hemphill, A., 2003. Neospora caninum and Toxoplasma gondii: a novel adhesion/invasion assay reveals distinct differences in tachyzoite-host cell interactions. Exp. Parasitol. 104, 149-158]. Pepstatin A-affinity-chromatography led to the isolation of a major band of approximately 52 kDa which was identified as a homologue of a previously described Toxoplasma gondii putative protein disulfide isomerase (TgPDI) through tandem mass spectrometry. A BLAST search against N. caninum expressed sequence tags (ESTs) on the ApiDots server using TgPDI cDNA as query sequence revealed a 2251 bp PDI-like consensus (NcPDI), which shows 94% identity to the T. gondii homologue. In N. caninum tachyzoites, NcPDI was found mainly in the soluble hydrophilic fraction. Immunofluorescence showed that expression of NcPDI was dramatically down-regulated in the bradyzoite stage, and immunogold-EM on tachyzoites localised the protein to the cytoplasm, mostly in close vicinity to the nuclear membrane, to the micronemes, and to the parasite cell surface. However, NcPDI was absent in rhoptries and dense granules. Preincubation of tachyzoites with the sulfhydryl blocker 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), p-chloromercuribenzoic acid (pCMBA), and with the PDI inhibitor bacitracin reduced adhesion of parasites to host cells. In addition, incubation of N. caninum tachyzoites with affinity-purified anti-NcPDI antibodies reduced host cell adhesion. PDIs catalyse the formation, reduction or isomerisation of disulfide bonds. Many major components of the adhesion and invasion machinery of apicomplexan parasites are cysteine-rich and dependent on correct folding via disulfide bond formation. Thus, our data points towards an important role for surface-associated NcPDI in Neospora-host cell interaction.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Neospora/enzimologia , Isomerases de Dissulfetos de Proteínas/fisiologia , Animais , Sequência de Bases , Adesão Celular/efeitos dos fármacos , Adesão Celular/imunologia , Adesão Celular/fisiologia , Cromatografia de Afinidade/métodos , DNA Complementar/genética , DNA de Protozoário/genética , Eletroforese em Gel de Poliacrilamida/métodos , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Neospora/genética , Neospora/fisiologia , Neospora/ultraestrutura , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/isolamento & purificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA