Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Langmuir ; 35(31): 10061-10067, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30681875

RESUMO

The development of new therapies for surgical adhesions has proven to be difficult as there is no consistently effective way to assess treatment efficacy in clinical trials without performing a second surgery, which can result in additional adhesions. We have developed lipid microbubble formulations that use a short peptide sequence, CREKA, to target fibrin, the molecule that forms nascent adhesions. These targeted polymerized shell microbubbles (PSMs) are designed to allow ultrasound imaging of early adhesions for diagnostic purposes and for evaluating the success of potential treatments in clinical trials while acting as a possible treatment. In this study, we show that CREKA-targeted microbubbles preferentially bind fibrin over fibrinogen and are stable for long periods of time (∼48 h), that these bound microbubbles can be visualized by ultrasound, and that neither these lipid-based bubbles nor their diagnostic-ultrasound-induced vibrations damage mesothelial cells in vitro. Moreover, these bubbles show the potential to identify adhesionlike fibrin formations and may hold promise in blocking or breaking up fibrin formations in vivo.


Assuntos
Meios de Contraste/química , Fibrina/metabolismo , Microbolhas , Aderências Teciduais/diagnóstico por imagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/toxicidade , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Microfluídica/métodos , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oligopeptídeos/toxicidade , Fosfatidilcolinas/química , Fosfatidilcolinas/toxicidade , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/toxicidade , Polímero Poliacetilênico/síntese química , Polímero Poliacetilênico/química , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Nanomedicina Teranóstica/métodos , Ultrassonografia/métodos
2.
Langmuir ; 31(36): 9762-70, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26303989

RESUMO

There is a critical need to formulate stable micron-sized oil droplets as hydrophobic drug carriers for efficient drug encapsulation, long-term storage, and sustained drug release. Microfluidic methods were developed to maximize the stability of micron-sized, oil-in-water (o/w) emulsions for potential use in drug delivery, using doxorubicin-loaded triacetin oil as a model hydrophobic drug formulation. Initial experiments examined multiple flow conditions for the dispersed (oil) and continuous (liposome aqueous) phases in a microfluidic device to establish the parameters that influenced droplet size. These data were fit to a mathematical model from the literature and indicate that the droplet sizes formed are controlled by the ratio of flow rates and the height of the device channel, rather than the orifice size. Next, we investigated effects of o/w emulsion production methods on the stability of the droplets. The stability of o/w emulsion produced by microfluidic flow-focusing techniques was found to be much greater (5 h vs 1 h) than for emulsions produced by mechanical agitation (vortexing). The increased droplet stability was attributed to the uniform size and lipid distribution of droplets generated by flow-focusing. In contrast, vortexed populations consisted of a wide size distribution that resulted in a higher prevalence of Ostwald ripening. Finally, the effects of shell polymerization on stability were investigated by comparing oil droplets encapsulated by a photopolymerizable diacetylene lipid shell to those with a nonpolymerizable lipid shell. Shell polymerization was found to significantly enhance stability against dissolution for flow-focused oil droplets but did not significantly affect the stability of vortexed droplets. Overall, results of these experiments show that flow-focusing is a promising technique for generating tunable, stable, monodisperse oil droplet emulsions, with potential applications for controlled delivery of hydrophobic drug formulations.


Assuntos
Materiais Revestidos Biocompatíveis , Portadores de Fármacos , Óleos , Fosfolipídeos/química , Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Polimerização
3.
J Surg Res ; 185(1): 45-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23827791

RESUMO

BACKGROUND: Antibody-based therapeutics is a rapidly growing field. Small engineered antibody fragments demonstrate similar antigen affinity compared with the parental antibody but have a shorter serum half-life and possess the ability to be conjugated to nanoparticles. The goal of this study was to engineer an anti-carbohydrate antigen 19-9 (CA19-9) cys-diabody fragment in hopes of targeting nanoparticles to pancreatic cancer. METHODS: The anti-CA19-9 cys-diabody was created by engineering a C-terminal cysteine residue into the DNA single-chain Fv construct of the anti-CA19-9 diabody and expressed in NS0 cells. Maleimide chemistry was used to conjugate the cys-diabody to polymerized liposomal nanoparticles (PLNs) through the cysteine residues. Flow cytometry was used to evaluate targeting of cys-diabody and cys-diabody-PLN conjugate to human pancreatic cancer cell lines. The cys-diabody was radiolabeled with a positron emitter ((124)I) and evaluated in a mouse model of CA19-9-positive and CA19-9-negative xenografts with micro-positron emission tomography/micro-computed tomography at successive time intervals after injection. Percentage of injected dose per gram of radioactivity was measured in blood and tumor to provide objective confirmation of the micro-positron emission tomographic images. RESULTS: Tumor xenograft imaging of the anti-CA19-9 cys-diabody demonstrated an average tumor-to-blood ratio of 3.0 and positive-to-negative tumor ratio of 7.4. Successful conjugation of the cys-diabody to PLNs was indicated by flow cytometry showing specific binding of cys-diabody-PLN conjugate to human pancreatic cancer cells in vitro. CONCLUSIONS: Our results show that the anti-CA19-9 cys-diabody targets pancreatic cancer providing specific molecular imaging in tumor xenograft models. Furthermore, the cys-diabody-PLN conjugate demonstrates target-specific binding of human pancreatic cancer cells with the potential to deliver targeted treatment.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígeno CA-19-9/imunologia , Nanopartículas/uso terapêutico , Neoplasias Pancreáticas/terapia , Tomografia por Emissão de Pósitrons/métodos , Anticorpos de Cadeia Única/farmacologia , Animais , Anticorpos Biespecíficos/química , Linhagem Celular Tumoral , Cistina/química , Cistina/farmacologia , Feminino , Humanos , Imunoterapia/métodos , Lipossomos/farmacologia , Camundongos , Camundongos Nus , Mieloma Múltiplo , Neoplasias Pancreáticas/diagnóstico por imagem , Engenharia de Proteínas , Anticorpos de Cadeia Única/química , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Langmuir ; 28(8): 3766-72, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22260537

RESUMO

Monodisperse gas microbubbles, encapsulated with a shell of photopolymerizable diacetylene lipids and phospholipids, were produced by microfluidic flow focusing, for use as ultrasound contrast agents. The stability of the polymerized shell microbubbles against both aggregation and gas dissolution under physiological conditions was studied. Polyethylene glycol (PEG) 5000, which was attached to the diacetylene lipids, was predicted by molecular theory to provide more steric hindrance against aggregation than PEG 2000, and this was confirmed experimentally. The polymerized shell microbubbles were found to have higher shell-resistance than nonpolymerizable shell microbubbles and commercially available microbubbles (Vevo MicroMarker). The acoustic stability under 7.5 MHz ultrasound insonation was significantly greater than that for the two comparison microbubbles. The acoustic stability was tunable by varying the amount of diacetylene lipid. Thus, our polymerized shell microbubbles are a promising platform for ultrasound contrast agents.


Assuntos
Acetileno/química , Meios de Contraste/química , Microbolhas , Polietilenoglicóis/química , Polimerização
5.
Sarcoma ; 2012: 126906, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23024593

RESUMO

Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%-30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN) to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

6.
Bioorg Med Chem Lett ; 18(2): 700-3, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18086524

RESUMO

Shiga toxin-producing Escherichia coli organisms (STEC) were detected by Gal-alpha1,4-Gal glycopolydiacetylene (GPDA) nanoparticles through the selective binding between Shiga toxin and GPDA nanoparticles. The binding produced a colorimetric change in the absorption wavelength of the GPDA nanoparticles. This method provides a highly selective, rapid, sensitive, and quantitative approach for the detection of STEC.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157/isolamento & purificação , Nanopartículas , Toxinas Shiga/biossíntese , Escherichia coli O157/metabolismo , Polímero Poliacetilênico , Polímeros , Poli-Inos
7.
PLoS One ; 13(7): e0200444, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29990379

RESUMO

Neutrophils are the most abundant white blood cells, with a vital role in innate immune defense against bacterial and fungal pathogens. Although mostly associated with pathological processes directly related to immune defense, they can also play a detrimental role in inflammatory conditions and have been found to have a pro-metastatic role in the spread of cancer cells. Here, we explore ways to temporarily suppress these detrimental activities. We first examined the possibility of using siRNA and antisense oligonucleotides (ASOs) for transient knockdown of the human and mouse C5a receptor, an important chemoattractant receptor involved in neutrophil-mediated injury that is associated with myocardial infarction, sepsis, and neurodegenerative diseases. We found that siRNAs and ASOs transfected into cultured cell lines can eliminate 70-90% of C5a receptor mRNA and protein within 72 h of administration, a clinically relevant time frame after a cardiovascular event. Targeted drug delivery to specific cells or tissues of interest in a mammalian host, however, remains a major challenge. Here, using phage display technology, we have identified peptides that bind specifically to CD177, a neutrophil-specific surface molecule. We have attached these peptides to fluorescent, lipid-based nanoparticles and confirmed targeting and delivery to cultured cells ectopically presenting either human or mouse CD177. In addition, we have shown peptide-nanoparticle binding specifically to neutrophils in human and mouse blood. We anticipate that these or related tagged nanoparticles may be therapeutically useful for delivery of siRNAs or ASOs to neutrophils for transient knockdown of pro-inflammatory proteins such as the C5a receptor.


Assuntos
Isoantígenos/metabolismo , Nanopartículas/administração & dosagem , Neutrófilos/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Células CHO , Cricetulus , Proteínas Ligadas por GPI/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Neutrófilos/citologia , Oligonucleotídeos Antissenso/administração & dosagem , Ligação Proteica , RNA Interferente Pequeno , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo
8.
ACS Appl Mater Interfaces ; 8(46): 31541-31549, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27781429

RESUMO

Microbubbles have been used in ultrasound-assisted drug delivery to help target solid tumors via blood vessels in vivo; however, studies to understand the phenomena at the cellular level and to optimize parameters for ultrasound or microbubbles in vivo are challenging and expensive to perform. Here, we utilize microfluidic microvessels-on-a-chip that enable visualization of microbubble/ultrasound-dependent drug delivery to microvasculature. When exposed to pulsed ultrasound, microbubbles perfused through microvessels-on-a-chip were observed to stably oscillate. Minimal cellular damage was observed for both microbubbles and untargeted doxorubicin-encapsulating liposomes (DOX-liposomes) perfused through chip microvessels. In contrast, passive and ultrasound-assisted perfusion of integrin-targeted DOX-liposomes induced cytotoxicity, which was only significantly enhanced for ultrasound-assisted perfusion when microbubbles were coperfused. These results suggest that stably oscillating microbubbles enhance targeted DOX-liposome internalization/cytotoxicity largely by stimulating integrin receptor endocytosis. Furthermore, our study demonstrates the utility of our microvessels-on-a-chip as a screening platform for optimizing drug dosage, targeting ligands and drugs.


Assuntos
Sistemas de Liberação de Medicamentos , Doxorrubicina , Lipossomos , Microbolhas , Microvasos , Ultrassom
9.
FASEB J ; 17(15): 2296-8, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14563683

RESUMO

The severity of allergic asthma is dependent, in part, on the intensity of peribronchial inflammation. P-selectin is known to play a role in the development of allergen-induced peribronchial inflammation and airway hyperreactivity. Selective inhibitors of P-selectin-mediated leukocyte endothelial-cell interactions may therefore attenuate the inflammatory processes associated with allergic airway disease. Novel P-selectin inhibitors were created using a polyvalent polymer nanoparticle capable of displaying multiple synthetic, low molecular weight ligands. By assembling a particle that presents an array of groups, which as monomers interact with only low affinity, we created a construct that binds extremely efficiently to P-selectin. The ligands acted as mimetics of the key binding elements responsible for the high-avidity adhesion of P-selectin to the physiologic ligand, PSGL-1. The inhibitors were initially evaluated using an in vitro shear assay system in which interactions between circulating cells and P-selectin-coated capillary tubes were measured. The nanoparticles were shown to preferentially bind to selectins expressed on activated endothelial cells. We subsequently demonstrated that nanoparticles displaying P-selectin blocking arrays were functionally active in vivo, significantly reducing allergen-induced airway hyperreactivity and peribronchial eosinophilic inflammation in a murine model of asthma.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Selectina-P/metabolismo , Alérgenos/imunologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Asma/imunologia , Asma/metabolismo , Biopolímeros/metabolismo , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/metabolismo , Bronquite/tratamento farmacológico , Bronquite/imunologia , Bronquite/metabolismo , Adesão Celular , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Ligantes , Lipídeos/química , Pulmão/citologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microesferas , Modelos Imunológicos , Selectina-P/genética , Mucosa Respiratória/metabolismo
10.
Chem Biol Interact ; 223: 134-40, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25261769

RESUMO

In this study, the first mechanism-based monoclonal antibodies have been produced that recognize and differentiate diethoxy- and monoethoxyphosphorylated serine residues. Haptens were synthesized as the stable phosphonate form of phosphoserine esters to improve the immunoresponse. Following condensation with a glutaric anhydride to link the phosphoserine moieties to carrier protein, the hapten densities attached to bovine serum albumin and keyhole limpet henocyanin were determined by partial trypsin digestion and MALDI mass spectrometry, and confirmed using a fluorescent assay (FITC) to quantify unmodified lysine residues. The conjugation reactions were pH optimized to improve hapten density. Screening of subclones led to the identification of two monoclonal antibodies: (a) N257/25.11 that specifically recognizes (EtO)2P(O)-Ser as the phosphylated or inhibited form, and (b) N262/16 that recognizes (EtO)(HO)P(O)-Ser as the 'aged' form. Analysis of blood samples treated with paraoxon (EtO)2P(O)-OPhNO2 showed a concentration dependent recognition of the phosphylated form.


Assuntos
Anticorpos Monoclonais/biossíntese , Haptenos/química , Inseticidas/química , Inseticidas/imunologia , Organofosfatos/química , Organofosfatos/imunologia , Animais , Bovinos , Ensaio de Imunoadsorção Enzimática , Haptenos/isolamento & purificação , Hemocianinas/química , Hemocianinas/imunologia , Humanos , Inseticidas/toxicidade , Masculino , Camundongos , Organofosfatos/toxicidade , Paraoxon/química , Paraoxon/imunologia , Paraoxon/toxicidade , Fosfosserina/análogos & derivados , Fosfosserina/química , Fosfosserina/imunologia , Ratos , Ratos Endogâmicos SHR , Soroalbumina Bovina/química , Soroalbumina Bovina/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Bioorg Med Chem Lett ; 17(18): 5125-8, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17662605

RESUMO

Quinoline-2,4-dicarboxylic acids (QDCs) bearing lipophilic substituents in the 6- or 7-position were shown to be inhibitors of the glutamate vesicular transporter (VGLUT). Using the arrangement of the QDC lipophilic substituents as a template, libraries of X(1)X(2)EF and X(1)X(2)EW tetrapeptides were synthesized and tested as VGLUT inhibitors. The peptides QIEW and WNEF were found to be the most potent. Further stereochemical deconvolution of these two peptides showed dQlIdElW to be the best inhibitor (K(i)=828+/-252 microM). Modeling and overlay of the tetrapeptide inhibitors with the existing pharmacophore showed that H-bonding and lipophilic residues are important for VGLUT binding.


Assuntos
Oligopeptídeos/farmacologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/antagonistas & inibidores , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA