RESUMO
The ubiquity of oxygen in organic, inorganic, and biological systems has stimulated the application and development of 17O solid-state NMR spectroscopy as a probe of molecular structure and dynamics. Unfortunately, 17O solid-state NMR experiments are often hindered by a combination of broad NMR signals and low sensitivity. Here, it is demonstrated that fast MAS and proton detection with the D-RINEPT pulse sequence can be generally applied to enhance the sensitivity and resolution of 17O solid-state NMR experiments. Complete 2D 17O â 1H D-RINEPT correlation NMR spectra were typically obtained in less than 10 h from less than 10 mg of material, with low to moderate 17O enrichment (less than 20%). Two-dimensional 1H-17O correlation solid-state NMR spectra allow overlapping oxygen sites to be resolved on the basis of proton chemical shifts or by varying the mixing time used for 1H-17O magnetization transfer. In addition, J-resolved or separated local field (SLF) blocks can be incorporated into the D-RINEPT pulse sequence to allow the direct measurement of one-bond 1H-17O scalar coupling constants (1 JOH) or 1H-17O dipolar couplings ( DOH), respectively, the latter of which can be used to infer 1H-17O bond lengths. 1 JOH and DOH calculated from plane-wave density functional theory (DFT) show very good agreement with experimental values. Therefore, the 2D 1H-17O correlation experiments, 1H-17O scalar and dipolar couplings, and plane-wave DFT calculations provide a method to precisely determine proton positions relative to oxygen atoms. This capability opens new opportunities to probe interactions between oxygen and hydrogen in a variety of chemical systems.
RESUMO
Engineering nanoparticle (NP) functions at the molecular level requires a detailed understanding of the dynamic processes occurring at the NP surface. Herein we show that a combination of dark-state exchange saturation transfer (DEST) and relaxation dispersion (RD) NMR experiments on gel-stabilized NP samples enables the accurate determination of the kinetics and thermodynamics of adsorption. We used the former approach to describe the interaction of cholic acid (CA) and phenol (PhOH) with ceria NPs with a diameter of approximately 200â nm. Whereas CA formed weak interactions with the NPs, PhOH was tightly bound to the NP surface. Interestingly, we found that the adsorption of PhOH proceeds via an intermediate, weakly bound state in which the small molecule has residual degrees of rotational diffusion. We believe the use of aqueous gels for stabilizing NP samples will increase the applicability of solution NMR methods to the characterization of nanomaterials.
RESUMO
Heterogeneous Brønsted acid catalysts are tremendously important in industry, particularly in catalytic cracking processes. Here we show that these Brønsted acid sites can be directly observed at natural abundance by 17 O DNP surface-enhanced NMR spectroscopy (SENS). We additionally show that the O-H bond length in these catalysts can be measured with sub-picometer precision, to enable a direct structural gauge of the lability of protons in a given material, which is correlated with the pH of the zero point of charge of the material. Experiments performed on materials impregnated with pyridine also allow for the direct detection of intermolecular hydrogen bonding interactions through the lengthening of O-H bonds.
RESUMO
Substrate-support interactions play an important role in the catalytic hydrogenation of phenolic compounds by ceria-supported palladium (Pd/CeO2). Here, we combine surface contrast solution NMR methods and reaction kinetic assays to investigate the role of substrate-support interactions in phenol (PhOH) hydrogenation catalyzed by titania-supported palladium (Pd/TiO2). We show that PhOH adsorbs on the catalyst via a weak hydrogen-bonding interaction between the -OH group of the substrate and one oxygen atom on the support. Interestingly, we observe that the addition of 20 mM inorganic phosphate results in a â¼2-fold destabilization of the PhOH-support interaction and a corresponding â¼2-fold inhibition of the catalytic reaction, suggesting an active role of the PhOH-TiO2 hydrogen bond in catalysis. A comparison of the data measured here with the results previously reported for a Pd/CeO2 catalyst indicates that the efficiency of the Pd-supported catalysts is correlated to the amount of PhOH hydrogen bonded to the metal oxide support. Since CeO2 and TiO2 have similar ability to uptake activated hydrogen from a noble metal site, these data suggest that hydrogen spillover is the main mechanism by which Pd-activated hydrogens are shuttled to the PhOH adsorbed on the surface of the support. Consistent with this hypothesis, Pd supported on a non-reducible metal oxide (silica) displays negligible hydrogenation activity. Therefore, we conclude that basic and reducible metal oxides are active supports for the efficient hydrogenation of phenolic compounds due to their ability to hydrogen bond to the substrate and mediate the addition of the activated hydrogens to the adsorbed aromatic ring.
RESUMO
Surface contrast solution NMR methods (scNMR) are emerging as powerful tools to investigate the adsorption of small molecule ligands to the surface of nanoparticles (NP), returning fundamental insight into the kinetics and thermodynamics of sorption, as well as structural information on the adsorbed species. A prerequisite for the acquisition of high quality solution NMR data is the preparation of homogeneous and stable samples that return consistent NMR spectra and allow extensive signal averaging. Unfortunately, this condition does not apply to NMR samples containing NPs that often show a tendency to sediment and accumulate at the bottom of the NMR tube over the course of the experiment. We have recently shown that preparing NMR samples in an agarose gel matrix inhibits sedimentation and allows the characterization of small molecule-NP interactions by scNMR. Unfortunately, as the agarose gel only forms in aqueous solution, this sample preparation method cannot be used to stabilize NP suspensions in a non-aqueous environment. Here, we introduce a library of 48 organogels, based on low molecular-mass organic gelators (LMOGs), to prepare NMR samples of small molecule/NP systems in a wide range of organic solvents. In addition, we present a simple method that takes advantage of 1H transverse relaxation (1H-R2) measurements to screen the library and identify the best gelator to characterize the small molecule-NP interaction of interest in the solvent of choice. We expect the results of this study will enable the preparation of homogeneous and stable samples of NPs in non-aqueous environments, therefore dramatically increasing the applicability of scNMR to the characterization of heterogeneous interactions and to the investigation of the role played by solvent molecules in regulating the kinetics and thermodynamics of sorption.