Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Anat ; 242(6): 1124-1145, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36781174

RESUMO

The digital reconstruction of neurocranial endocasts has elucidated the gross brain structure and potential ecological attributes of many fossil taxa, including Irritator, a spinosaurine spinosaurid from the "mid" Cretaceous (Aptian) of Brazil. With unexceptional hearing capabilities, this taxon was inferred to integrate rapid and controlled pitch-down movements of the head that perhaps aided in the predation of small and agile prey such as fish. However, the neuroanatomy of baryonychine spinosaurids remains to be described, and potentially informs on the condition of early spinosaurids. Using micro-computed tomographic scanning (µCT), we reconstruct the braincase endocasts of Baryonyx walkeri and Ceratosuchops inferodios from the Wealden Supergroup (Lower Cretaceous) of England. We show that the gross endocranial morphology is similar to other non-maniraptoriform theropods, and corroborates previous observations of overall endocranial conservatism amongst more basal theropods. Several differences of unknown taxonomic utility are noted between the pair. Baryonychine neurosensory capabilities include low-frequency hearing and unexceptional olfaction, whilst the differing morphology of the floccular lobe tentatively suggests less developed gaze stabilisation mechanisms relative to spinosaurines. Given the morphological similarities observed with other basal tetanurans, baryonychines likely possessed comparable behavioural sophistication, suggesting that the transition from terrestrial hypercarnivorous ancestors to semi-aquatic "generalists" during the evolution of Spinosauridae did not require substantial modification of the brain and sensory systems.


Assuntos
Dinossauros , Animais , Dinossauros/anatomia & histologia , Crânio/anatomia & histologia , Encéfalo/anatomia & histologia , Fósseis , Neuroanatomia , Evolução Biológica
2.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855360

RESUMO

The extinct ocean-going plesiosaurs were unique within vertebrates because they used two flipper pairs identical in morphology for propulsion. Although fossils of these Mesozoic marine reptiles have been known for more than two centuries, the function and dynamics of their tandem-flipper propulsion system has always been unclear and controversial. We address this question quantitatively for the first time in this study, reporting a series of precisely controlled water tank experiments that use reconstructed plesiosaur flippers scaled from well-preserved fossils. Our aim was to determine which limb movements would have resulted in the most efficient and effective propulsion. We show that plesiosaur hind flippers generated up to 60% more thrust and 40% higher efficiency when operating in harmony with their forward counterparts, when compared with operating alone, and the spacing and relative motion between the flippers was critical in governing these increases. The results of our analyses show that this phenomenon was probably present across the whole range of plesiosaur flipper motion and resolves the centuries-old debate about the propulsion style of these marine reptiles, as well as indicating why they retained two pairs of flippers for more than 100 million years.


Assuntos
Fósseis , Répteis/fisiologia , Natação , Animais , Locomoção
3.
Anat Rec (Hoboken) ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668805

RESUMO

Recent years have seen increasing scientific interest in whether neuron counts can act as correlates of diverse biological phenomena. Lately, Herculano-Houzel (2023) argued that fossil endocasts and comparative neurological data from extant sauropsids allow to reconstruct telencephalic neuron counts in Mesozoic dinosaurs and pterosaurs, which might act as proxies for behaviors and life history traits in these animals. According to this analysis, large theropods such as Tyrannosaurus rex were long-lived, exceptionally intelligent animals equipped with "macaque- or baboon-like cognition", whereas sauropods and most ornithischian dinosaurs would have displayed significantly smaller brains and an ectothermic physiology. Besides challenging established views on Mesozoic dinosaur biology, these claims raise questions on whether neuron count estimates could benefit research on fossil animals in general. Here, we address these findings by revisiting Herculano-Houzel's (2023) work, identifying several crucial shortcomings regarding analysis and interpretation. We present revised estimates of encephalization and telencephalic neuron counts in dinosaurs, which we derive from phylogenetically informed modeling and an amended dataset of endocranial measurements. For large-bodied theropods in particular, we recover significantly lower neuron counts than previously proposed. Furthermore, we review the suitability of neurological variables such as neuron numbers and relative brain size to predict cognitive complexity, metabolic rate and life history traits in dinosaurs, coming to the conclusion that they are flawed proxies for these biological phenomena. Instead of relying on such neurological estimates when reconstructing Mesozoic dinosaur biology, we argue that integrative studies are needed to approach this complex subject.

4.
Biol Lett ; 9(4): 20130021, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23676653

RESUMO

Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed.


Assuntos
Evolução Biológica , Fósseis , Répteis/classificação , Animais , Especiação Genética , Iraque , Filogenia , Répteis/genética
5.
PeerJ ; 11: e15453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273543

RESUMO

Isolated spinosaurid teeth are relatively well represented in the Lower Cretaceous Wealden Supergroup of southern England, UK. Until recently it was assumed that these teeth were referable to Baryonyx, the type species (B. walkeri) and specimen of which is from the Barremian Upper Weald Clay Formation of Surrey. British spinosaurid teeth are known from formations that span much of the c. 25 Ma depositional history of the Wealden Supergroup, and recent works suggest that British spinosaurids were more taxonomically diverse than previously thought. On the basis of both arguments, it is appropriate to doubt the hypothesis that isolated teeth from outside the Upper Weald Clay Formation are referable to Baryonyx. Here, we use phylogenetic, discriminant and cluster analyses to test whether an isolated spinosaurid tooth (HASMG G369a, consisting of a crown and part of the root) from a non-Weald Clay Formation unit can be referred to Baryonyx. HASMG G369a was recovered from an uncertain Lower Cretaceous locality in East Sussex but is probably from a Valanginian exposure of the Hastings Group and among the oldest spinosaurid material known from the UK. Spinosaurid affinities are both quantitatively and qualitatively supported, and HASMG G369a does not associate with Baryonyx in any analysis. This supports recent reinterpretations of the diversity of spinosaurid in the Early Cretaceous of Britain, which appears to have been populated by multiple spinosaurid lineages in a manner comparable to coeval Iberian deposits. This work also reviews the British and global records of early spinosaurids (known mainly from dental specimens), and revisits evidence for post-Cenomanian spinosaurid persistence.


Assuntos
Dinossauros , Dente , Animais , Dinossauros/anatomia & histologia , Filogenia , Fósseis , Argila
6.
Biol Lett ; 8(1): 97-100, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21835881

RESUMO

We describe an enormous Late Cretaceous fossil bird from Kazakhstan, known from a pair of edentulous mandibular rami (greater than 275 mm long), which adds significantly to our knowledge of Mesozoic avian morphological and ecological diversity. A suite of autapomorphies lead us to recognize the specimen as a new taxon. Phylogenetic analysis resolves this giant bird deep within Aves as a basal member of Ornithuromorpha. This Kazakh fossil demonstrates that large body size evolved at least once outside modern birds (Neornithes) and reveals hitherto unexpected trophic diversity within Cretaceous Aves.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Fósseis , Mandíbula/anatomia & histologia , Filogenia , Animais , Cazaquistão , Paleontologia , Especificidade da Espécie
7.
Naturwissenschaften ; 99(6): 435-42, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22575918

RESUMO

Despite a rapidly improving fossil record, the reproductive biology of Mesozoic birds remains poorly known: only a handful of undisputed, isolated Cretaceous eggs (some containing embryonic remains) are known. We report here the first fossil evidence for a breeding colony of Mesozoic birds, preserved at the Late Cretaceous (Maastrichtian) Oarda de Jos (Od) site in the Sebes area of Transylvania, Romania. A lens of calcareous mudstone with minimum dimensions of 80 cm length, 50 cm width and 20 cm depth contains thousands of tightly packed, morphologically homogenous eggshell fragments, seven near-complete eggs and neonatal and adult avialan skeletal elements. Eggshell forms 70-80 % of the matrix, and other fossils are entirely absent. The bones exhibit clear characters of the Cretaceous avialan clade Enantiornithes, and the eggshell morphology is also consistent with this identification. Both taphonomy and lithology show that the components of this lens were deposited in a single flood event, and we conclude that it represents the drowned remains of a larger enantiornithine breeding colony, swamped by rising water, washed a short distance and deposited in a shallow, low-energy pond. The same fate often befalls modern bird colonies. Such a large concentration of breeding birds suggests aquatic feeding in this species, augments our understanding of enantiornithine biology and shows that colonial nesting was not unique to crown birds.


Assuntos
Aves/fisiologia , Fósseis , Animais , Aves/anatomia & histologia , Aves/classificação , Dieta , Comportamento de Nidação , Rios , Romênia , Zigoto
8.
PeerJ ; 10: e12727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821895

RESUMO

Eotyrannus lengi Hutt et al., 2001 from the Lower Cretaceous Wessex Formation (part of the Wealden Supergroup) of the Isle of Wight, southern England, is described in detail, compared with other theropods, and evaluated in a new phylogenetic analysis. Eotyrannus is represented by a single individual that would have been c. 4.5 m long; it preserves the anterior part of the skull, a partial forelimb and pectoral girdle, various cervical, dorsal and caudal vertebrae, rib fragments, part of the ilium, and hindlimb elements excluding the femur. Lack of fusion with regard to both neurocentral and sacral sutures indicates subadult status. Eotyrannus possesses thickened, fused, pneumatic nasals with deep lateral recesses, elongate, tridactyl forelimbs and a tyrannosaurid-like scapulocoracoid. The short preantorbital ramus of the maxilla and nasals that are approximately seven times longer than they are wide show that Eotyrannus was not longirostrine. A posterodorsally inclined ridge on the ilium's lateral surface fails to reach the dorsal margin: a configuration seen elsewhere in Juratyrant. Eotyrannus is not arctometatarsalian. Autapomorphies include the presence of curving furrows on the dentary, a block-like humeral entepicondyle, and a distoproximally aligned channel close to the distolateral border of the tibia. Within Tyrannosauroidea, E. lengi is phylogenetically intermediate between Proceratosauridae and Yutyrannus and the clade that includes Xiongguanlong, Megaraptora, Dryptosaurus and Tyrannosauridae. We do not find support for a close affinity between Eotyrannus and Juratyrant. Our analysis supports the inclusion of Megaraptora within Tyrannosauroidea and thus increases Cretaceous tyrannosauroid diversity and disparity. A proposal that Eotyrannus might belong within Megaraptora, however, is based on character states not present in the taxon. Several theropods from the Wessex Formation are based on material that overlaps with the E. lengi holotype but none can be shown to be synonymous with it.


Assuntos
Dinossauros , Fósseis , Animais , Filogenia , Osteologia , Crânio/anatomia & histologia , Tíbia , Dinossauros/anatomia & histologia
9.
PeerJ ; 10: e13543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35702254

RESUMO

Postcranial elements (cervical, sacral and caudal vertebrae, as well as ilium, rib and limb bone fragments) belonging to a gigantic tetanuran theropod were recovered from the basal unit (the White Rock Sandstone equivalent) of the Vectis Formation near Compton Chine, on the southwest coast of the Isle of Wight. These remains appear to pertain to the same individual, with enormous dimensions similar to those of the Spinosaurus holotype and exceeding those of the largest European theropods previously reported. A combination of features-including the presence of spinodiapophyseal webbing on an anterior caudal vertebra-suggest that this is a member of Spinosauridae, though a lack of convincing autapomorphies precludes the identification of a new taxon. Phylogenetic analysis supports spinosaurid affinities but we were unable to determine a more precise position within the clade weak support for a position within Spinosaurinae or an early-diverging position within Spinosauridae were found in some data runs. Bioerosion in the form of curved tubes is evident on several pieces, potentially related to harvesting behaviour by coleopteran bioeroders. This is the first spinosaurid reported from the Vectis Formation and the youngest British material referred to the clade. This Vectis Formation spinosaurid is unusual in that the majority of dinosaurs from the Lower Cretaceous units of the Wealden Supergroup are from the fluviolacustrine deposits of the underlying Barremian Wessex Formation. In contrast, the lagoonal facies of the upper Barremian-lower Aptian Vectis Formation only rarely yield dinosaur material. Our conclusions are in keeping with previous studies that emphasise western Europe as a pivotal region within spinosaurid origination and diversification.


Assuntos
Dinossauros , Animais , Filogenia , Dinossauros/anatomia & histologia , Fósseis , Coluna Vertebral , Reino Unido
10.
Sci Rep ; 11(1): 13130, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294737

RESUMO

Competing views exist on the behaviour and lifestyle of pterosaurs during the earliest phases of life. A 'flap-early' model proposes that hatchlings were capable of independent life and flapping flight, a 'fly-late' model posits that juveniles were not flight capable until 50% of adult size, and a 'glide-early' model requires that young juveniles were flight-capable but only able to glide. We test these models by quantifying the flight abilities of very young juvenile pterosaurs via analysis of wing bone strength, wing loading, wingspan and wing aspect ratios, primarily using data from embryonic and hatchling specimens of Pterodaustro guinazui and Sinopterus dongi. We argue that a young Sinopterus specimen has been mischaracterised as a distinct taxon. The humeri of pterosaur juveniles are similar in bending strength to those of adults and able to withstand launch and flight; wing size and wing aspect ratios of young juveniles are also in keeping with powered flight. We therefore reject the 'fly-late' and 'glide-early' models. We further show that young juveniles were excellent gliders, albeit not reliant on specialist gliding. The wing forms of very young juveniles differ significantly from larger individuals, meaning that variation in speed, manoeuvrability, take-off angle and so on was present across a species as it matured. Juveniles appear to have been adapted for flight in cluttered environments, in contrast to larger, older individuals. We propose on the basis of these conclusions that pterosaur species occupied distinct niches across ontogeny.


Assuntos
Osso e Ossos , Voo Animal , Fósseis , Répteis/anatomia & histologia , Asas de Animais , Animais , Fenômenos Biomecânicos , Répteis/fisiologia
11.
Sci Rep ; 11(1): 19340, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588472

RESUMO

Spinosaurids are among the most distinctive and yet poorly-known of large-bodied theropod dinosaurs, a situation exacerbated by their mostly fragmentary fossil record and competing views regarding their palaeobiology. Here, we report two new Early Cretaceous spinosaurid specimens from the Wessex Formation (Barremian) of the Isle of Wight. Large-scale phylogenetic analyses using parsimony and Bayesian techniques recover the pair in a new clade within Baryonychinae that also includes the hypodigm of the African spinosaurid Suchomimus. Both specimens represent distinct and novel taxa, herein named Ceratosuchops inferodios gen. et sp. nov. and Riparovenator milnerae gen. et sp. nov. A palaeogeographic reconstruction suggests a European origin for Spinosauridae, with at least two dispersal events into Africa. These new finds provide welcome information on poorly sampled areas of spinosaurid anatomy, suggest that sympatry was present and potentially common in baryonychines and spinosaurids as a whole, and contribute to updated palaeobiogeographic reconstructions for the clade.

13.
J Theor Biol ; 265(2): 151-9, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20385144

RESUMO

Giraffes (Giraffa camelopardalis) are often stated to be unable to swim, and while few observations supporting this have ever been offered, we sought to test the hypothesis that giraffes exhibited a body shape or density unsuited for locomotion in water. We assessed the floating capability of giraffes by simulating their buoyancy with a three-dimensional mathematical/computational model. A similar model of a horse (Equus caballus) was used as a control, and its floating behaviour replicates the observed orientations of immersed horses. The floating giraffe model has its neck sub-horizontal, and the animal would struggle to keep its head clear of the water surface. Using an isometrically scaled-down giraffe model with a total mass equal to that of the horse, the giraffe's proportionally larger limbs have much higher rotational inertias than do those of horses, and their wetted surface areas are 13.5% greater relative to that of the horse, thus making rapid swimming motions more strenuous. The mean density of the giraffe model (960 gm/l) is also higher than that of the horse (930 gm/l), and closer to that causing negative buoyancy (1000 gm/l). A swimming giraffe - forced into a posture where the neck is sub-horizontal and with a thorax that is pulled downwards by the large fore limbs - would not be able to move the neck and limbs synchronously as giraffes do when moving on land, possibly further hampering the animal's ability to move its limbs effectively underwater. We found that a full-sized, adult giraffe will become buoyant in water deeper than 2.8m. While it is not impossible for giraffes to swim, we speculate that they would perform poorly compared to other mammals and are hence likely to avoid swimming if possible.


Assuntos
Simulação por Computador , Modelos Biológicos , Ruminantes/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Tamanho Corporal , Cavalos/anatomia & histologia , Cavalos/fisiologia , Ruminantes/anatomia & histologia
15.
Sci Rep ; 9(1): 1944, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760740

RESUMO

A Late Cretaceous-aged multi-taxon nesting site from Romania preserved in three dimensions reveals the earliest example of nest site sharing yet known from the vertebrate fossil record. Eggshell and osteological evidence combined in this single accumulation demonstrate that at least four vertebrate taxa including enantiornithine birds and another avian of indeterminate affinities as well as crocodylomorphs and gekkotan squamates nested together in the same place. Colonial nesting in enantiornithines was previously described from this site; here, we present the first fossil evidence that other vertebrates also nested in the same place, perhaps exploiting the presence of the large bird colony. We describe four distinct eggshell morphotypes that have been collected from this site and draw palaeoecological inferences based on this unique multi-taxon nesting association.


Assuntos
Casca de Ovo/anatomia & histologia , Casca de Ovo/química , Animais , Evolução Biológica , Aves/classificação , Ovos , Fósseis , Romênia , Vertebrados/classificação
16.
PeerJ ; 5: e2908, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28133577

RESUMO

Azhdarchid pterosaurs include the largest animals to ever take to the skies with some species exceeding 10 metres in wingspan and 220 kg in mass. Associated skeletons show that azhdarchids were long-necked, long-jawed predators that combined a wing planform suited for soaring with limb adaptations indicative of quadrupedal terrestrial foraging. The postcranial proportions of the group have been regarded as uniform overall, irrespective of their overall size, notwithstanding suggestions that minor variation may have been present. Here, we discuss a recently discovered giant azhdarchid neck vertebra referable to Hatzegopteryx from the Maastrichtian Sebes Formation of the Transylvanian Basin, Romania, which shows how some azhdarchids departed markedly from conventional views on their proportions. This vertebra, which we consider a cervical VII, is 240 mm long as preserved and almost as wide. Among azhdarchid cervicals, it is remarkable for the thickness of its cortex (4-6 mm along its ventral wall) and robust proportions. By comparing its dimensions to other giant azhdarchid cervicals and to the more completely known necks of smaller taxa, we argue that Hatzegopteryx had a proportionally short, stocky neck highly resistant to torsion and compression. This specimen is one of several hinting at greater disparity within Azhdarchidae than previously considered, but is the first to demonstrate such proportional differences within giant taxa. On the assumption that other aspects of Hatzegopteryx functional anatomy were similar to those of other azhdarchids, and with reference to the absence of large terrestrial predators in the Maastrichtian of Transylvania, we suggest that this pterosaur played a dominant predatory role among the unusual palaeofauna of ancient Hateg.

17.
Sci Rep ; 7(1): 3749, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623335

RESUMO

The discovery of large, complex, internal canals within the rostra of fossil reptiles has been linked with an enhanced tactile function utilised in an aquatic context, so far in pliosaurids, the Cretaceous theropod Spinosaurus, and the related spinosaurid Baryonyx. Here, we report the presence of a complex network of large, laterally situated, anastomosing channels, discovered via micro-focus computed tomography (µCT), in the premaxilla and maxilla of Neovenator, a mid-sized allosauroid theropod from the Early Cretaceous of the UK. We identify these channels as neurovascular canals, that include parts of the trigeminal nerve; many branches of this complex terminate on the external surfaces of the premaxilla and maxilla where they are associated with foramina. Neovenator is universally regarded as a 'typical' terrestrial, predatory theropod, and there are no indications that it was aquatic, amphibious, or unusual with respect to the ecology or behaviour predicted for allosauroids. Accordingly, we propose that enlarged neurovascular facial canals shouldn't be used to exclusively support a model of aquatic foraging in theropods and argue instead that an enhanced degree of facial sensitivity may have been linked with any number of alternative behavioural adaptations, among them defleshing behaviour, nest selection/maintenance or social interaction.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Maxila/diagnóstico por imagem , Microtomografia por Raio-X , Animais
19.
PeerJ ; 3: e1032, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26157616

RESUMO

The exceptionally well-preserved Romanian dinosaur Balaur bondoc is the most complete theropod known to date from the Upper Cretaceous of Europe. Previous studies of this remarkable taxon have included its phylogenetic interpretation as an aberrant dromaeosaurid with velociraptorine affinities. However, Balaur displays a combination of both apparently plesiomorphic and derived bird-like characters. Here, we analyse those features in a phylogenetic revision and show how they challenge its referral to Dromaeosauridae. Our reanalysis of two distinct phylogenetic datasets focusing on basal paravian taxa supports the reinterpretation of Balaur as an avialan more crownward than Archaeopteryx but outside of Pygostylia, and as a flightless taxon within a paraphyletic assemblage of long-tailed birds. Our placement of Balaur within Avialae is not biased by character weighting. The placement among dromaeosaurids resulted in a suboptimal alternative that cannot be rejected based on the data to hand. Interpreted as a dromaeosaurid, Balaur has been assumed to be hypercarnivorous and predatory, exhibiting a peculiar morphology influenced by island endemism. However, a dromaeosaurid-like ecology is contradicted by several details of Balaur's morphology, including the loss of a third functional manual digit, the non-ginglymoid distal end of metatarsal II, and a non-falciform ungual on the second pedal digit that lacks a prominent flexor tubercle. Conversely, an omnivorous ecology is better supported by Balaur's morphology and is consistent with its phylogenetic placement within Avialae. Our reinterpretation of Balaur implies that a superficially dromaeosaurid-like taxon represents the enlarged, terrestrialised descendant of smaller and probably volant ancestors.

20.
PeerJ ; 2: e291, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24688867

RESUMO

Two big cat skulls procured from hunters of Yanachaga National Park, Peru, were reported as those of cats informally dubbed the 'striped tiger' and 'anomalous jaguar'. Observations suggested that both skulls were distinct from those of jaguars, associated descriptions of integument did not conform to this species, and it has been implied that both represent members of one or two novel species. We sought to resolve the identity of the skulls using morphometrics. DNA could not be retrieved since both had been boiled as part of the defleshing process. We took 36 cranial and 13 mandibular measurements and added them to a database incorporating nearly 300 specimens of over 30 felid species. Linear discriminant analysis resolved both specimens as part of Panthera onca with high probabilities for cranial and mandibular datasets. Furthermore, the specimens exhibit characters typical of jaguars. If the descriptions of their patterning and pigmentation are accurate, we assume that both individuals were aberrant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA