Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Small ; : e2407986, 2024 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-39491513

RESUMO

Covalent organic networks (CONs) are considered ideal for precise molecular separation compared with traditional polymer membranes because their pores have a sharp molecular weight cut-off and a robust structure. However, challenges remain with regard to tuning pores as a prerequisite for facile membrane fabrication to a defect-free layer. Herein, a highly conjugated amino-porphyrin is used and exploited its tunable stacking behavior to fabricate porphyrin-based polyamide CONs with ordered structures through interfacial polymerization with acyl chlorides. Controlling the self-aggregation behavior of the porphyrin and the conformation of the acyl chlorides can create different covalent networks. Acid-triggered porphyrin protonation offsets stacking to reduce the pore in the network from mesopore to micropore, enabling selective molecule transport. Furthermore, different acyl chloride ligands are used to control the interlayer bonding in CONs. Accordingly, the tailored pore diameters (0.48-0.78 nm) are confirmed by the molecule rejections with performance stability over 25 days of operation, as well as under various conditions. This study leverages porphyrin chemistry and interfacial polymerization to fabricate a defect-free CON layer with a significantly lower molecular weight cut-off (< 330 Da) than previously reported porphyrin-based membranes (>800 Da). This will pave the way for the development of ideal topological membranes.

2.
Small ; 20(34): e2311237, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38593376

RESUMO

Chemically converted graphene oxide laminate membranes, which exhibit stable interlayered nanochannels in aqueous environments, are receiving increasing attention owing to their potential for selective water and ion permeation. However, how the molecular properties of conversion agents influence the stabilization of nanochannels and how effectively nanochannels are stabilized have rarely been studied. In this study, mono-, di-, and tri-saccharide molecules of glucose (Glu), maltose (Glu2), and maltotriose (Glu3) are utilized, respectively, to chemically modify graphene oxide (GO). The aim is to create nanochannels with different levels of stability and investigate how these functional conversion agents affect the separation performance. The effects of the property differences between different conversion agents on nanochannel stabilization are demonstrated. An agent with efficient chemical reduction of GO and limited intercalation in the resulting nanochannel ensures satisfactory nanochannel stability during desalination. The stabilized membrane nanochannel exhibits a permeance of 0.69 L m-2 h-1 bar-1 and excellent Na2SO4 rejection of 96.42%. Furthermore, this optimized membrane nanochannel demonstrates enhanced stability under varying external conditions compared to the original GO. This study provides useful information for the design of chemical conversion agents for GO nanochannel stabilization and the development of nanochannel membranes for precise separation.

3.
Nano Lett ; 23(13): 6095-6101, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37379477

RESUMO

Subnanometer interlayer space in graphene oxide (GO) laminates is desirable for use as permselective membrane nanochannels. Although the facile modification of the local structure of GO enables various nanochannel functionalizations, precisely controlling nanochannel space is still a challenge, and the roles of confined nanochannel chemistry in selective water/ion separation have not been clearly defined. In this study, macrocyclic molecules with consistent basal plane but varying side groups were used to conjunct with GO for modified nanochannels in laminates. We demonstrated the side-group dependence of both the angstrom-precision tunability for channel free space and the energy barrier setting for ion transport, which challenges the permeability-selectivity trade-off with a slightly decreased permeance from 1.1 to 0.9 L m-2 h-1 bar-1 but an increased salt rejection from 85% to 95%. This study provides insights into the functional-group-dependent intercalation modifications of GO laminates for understanding laminate structural control and nanochannel design.

4.
Small ; 19(33): e2300672, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37072832

RESUMO

Laminar membranes comprising graphene oxide (GO) and metal-organic framework (MOF) nanosheets benefit from the regular in-plane pores of MOF nanosheets and thus can support rapid water transport. However, the restacking and agglomeration of MOF nanosheets during typical vacuum filtration disturb the stacking of GO sheets, thus deteriorating the membrane selectivity. Therefore, to fabricate highly permeable MOF nanosheets/reduced GO (rGO) membranes, a two-step method is applied. First, using a facile solvothermal method, ZnO nanoparticles are introduced into the rGO laminate to stabilize and enlarge the interlayer spacing. Subsequently, the ZnO/rGO membrane is immersed in a solution of tetrakis(4-carboxyphenyl)porphyrin (H2 TCPP) to realize in situ transformation of ZnO into Zn-TCPP in the confined interlayer space of rGO. By optimizing the transformation time and mass loading of ZnO, the obtained Zn-TCPP/rGO laminar membrane exhibits preferential orientation of Zn-TCPP, which reduces the pathway tortuosity for small molecules. As a result, the composite membrane achieves a high water permeance of 19.0 L m-2  h-1  bar-1 and high anionic dye rejection (>99% for methyl blue).

5.
Phys Chem Chem Phys ; 23(36): 20313-20322, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34486597

RESUMO

Reverse osmosis (RO) is a widely used energy-efficient separation technology for water treatment. Polyamide (PA) membranes are the conventional choice for this process. Fouling is a serious problem for RO separation. This issue leads to significant decreases in the water permeability of PA membranes, and it has yet to be fully elucidated. In particular, the fouling behavior of a nonionic substance on the negatively charged surface of a PA membrane in an aqueous environment has not been previously studied. In this work, the mechanisms of nonionic substances such as polyoxyethylene octyl ether (PE5) and maltose (Mal) were investigated using molecular dynamics (MD) simulations. In a PA membrane in which the carboxyl group was not dissociated, the hydrophobic portion of the membrane was exposed due to the localization of water molecules around the carboxyl groups in the PA membrane. This caused hydrophobic interaction with the hydrophobic groups of PE5. In the case of an amine-modified PA membrane containing no carboxyl groups, water was not localized around the functional group, and the water orientation of the polyamide surface was also low. Due to this membrane property, the presence of stabilized water around PE5 reduced the number of hydrophobic interactions. In similar manner, a PA membrane with a slightly dissociated carboxyl group was hydrophilic, which reduced the PE5 adsorption. The presence of many dissociated carboxyl groups, however, enhanced the adsorption of PE5 due to the increase in interactions between the dissociated carboxyl groups and the hydrophilic groups of PE5. Therefore, PE5 exhibited an amphipathic adsorption wherein both hydrophilic and hydrophobic groups contributed to adsorption onto the PA membrane. Mal, on the other hand, was highly stable in every aqueous environment independent of the state of the functional groups of the PA membrane, and was not easily affected by the properties of the PA membrane.

6.
Langmuir ; 36(12): 3268-3275, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32186195

RESUMO

In the present study, thrombocytes, erythrocytes, and leukocytes were individually brought into contact with different immobilized blood proteins on the surface of polystyrene (PS), which was modified with a poly(styrene)-b-poly(acrylic acid) copolymer. When the concentration of fibronectin was greater than 5 µg mL-1, the attachment of erythrocytes increased, which indicated that the modified PS surface was less compatible with erythrocytes. In addition, vitronectin and laminin attached on the surface increased the adhesion of thrombocytes; higher adhesion was observed for leukocytes in the cases of fibrinogen, lysozyme, and laminin. Interestingly, adhesion properties of blood cells on the protein surface could be influenced by the addition of metal oxide- and carbon-based photocatalysts. After a photocatalytic treatment by metal oxide-based TiO2, the adhesion amounts of erythrocytes improved slightly, whereas the adhesion of leukocytes and thrombocytes decreased after treatment with a carbon-based g-C3N4 nanosheet. Our results suggested that the surface modification of the substrate through photocatalysis using various photocatalysts along with the grafting of the poly(styrene)-b-poly(acrylic acid) copolymer could be a promising approach to alternatively control the blood compatibility on the protein surface.


Assuntos
Resinas Acrílicas , Poliestirenos , Células Sanguíneas , Adesão Celular , Propriedades de Superfície
7.
J Am Chem Soc ; 139(36): 12670-12680, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28806077

RESUMO

Hydrated niobium oxides are used as strong solid acids with a wide variety of catalytic applications, yet the correlations between structure and acidity remain unclear. New insights into the structural features giving rise to Lewis and Brønsted acid sites are presently achieved. It appears that Lewis acid sites can arise from lower coordinate NbO5 and in some cases NbO4 sites, which are due to the formation of oxygen vacancies in thin and flexible NbO6 systems. Such structural flexibility of Nb-O systems is particularly pronounced in high surface area nanostructured materials, including few-layer to monolayer or mesoporous Nb2O5·nH2O synthesized in the presence of stabilizers. Bulk materials on the other hand only possess a few acid sites due to lower surface areas and structural rigidity: small numbers of Brønsted acid sites on HNb3O8 arise from a protonic structure due to the water content, whereas no acid sites are detected for anhydrous crystalline H-Nb2O5.

8.
RSC Adv ; 14(29): 20786-20796, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38952929

RESUMO

A tough ion gel membrane containing a CO2-philic ionic liquid, 1-ethyl-3-methylimidazolium tricyanomethanide ([Emim][C(CN)3]), was developed, and its CO2 permeation properties were evaluated under humid conditions at elevated temperatures. Pebax 1657, which is a diblock copolymer composed of a polyamide block and a polyethylene oxide block, was used as the gel network of the ion gel membrane to prepare a tough ion gel with good ionic liquid-holding properties. The polyamide block formed a semicrystalline structure in [Emim][C(CN)3] to toughen the ion gel membrane via an energy dissipation mechanism. The polyethylene oxide block exhibited good compatibility with [Emim][C(CN)3] and contributed to the retention of the ionic liquid in the ion gel. The developed ion gel membrane showed a good CO2 separation performance of 1677 barrer CO2 permeability and 37 CO2/N2 permselectivity under humid conditions of 75% relative humidity at an elevated temperature of 50 °C, which corresponds to an exhaust gas from a coal-fired power plant.

9.
Bioresour Technol ; 393: 130144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042432

RESUMO

This study aimed to establish a high-level phenol bioproduction system from glycerol through metabolic engineering of the yeast Pichia pastoris (Komagataella phaffii). Introducing tyrosine phenol-lyase to P. pastoris led to a production of 59 mg/L of phenol in flask culture. By employing a strain of P. pastoris that overproduces tyrosine-a precursor to phenol-we achieved a phenol production of 1052 mg/L in glycerol fed-batch fermentation. However, phenol concentrations exceeding 1000 mg/L inhibited P. pastoris growth. A phenol pertraction system utilizing a hollow fiber membrane contactor and tributyrin as the organic solvent was developed to reduce phenol concentration in the culture medium. Integrating this system with glycerol fed-batch fermentation resulted in a 214 % increase in phenol titer (3304 mg/L) compared to glycerol fed-batch fermentation alone. These approaches offer a significant framework for the microbial production of chemicals and materials that are highly toxic to microorganisms.


Assuntos
Glicerol , Fenol , Saccharomycetales , Fermentação , Glicerol/metabolismo , Fenol/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Metanol/metabolismo
10.
Water Res ; 246: 120716, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37837900

RESUMO

Ammoniacal nitrogen (NH4N) is a ubiquitous nitrogen pollutant found in wastewater, which could cause eutrophication and severe environmental stress. It is therefore necessary to manage NH4N by enrichment and recovery for potential reuse, as well as to regulate the amount of environmental discharge. Hybridization of membrane-based processes is an attractive option for further enhancing water and nutrient reclamation from waste streams; thus, in this present work, a hybrid osmotically assisted reverse osmosis (OARO) and reverse osmosis (RO) process was demonstrated for subsequent ammoniacal nitrogen enrichment and wastewater discharge management. Using a commercially-available cellulose triacetate membrane module, model and real wastewater containing approximately 4,000ppm NH4N were effectively dewatered and enriched to a final NH4N content of 40,300ppm. This corresponds to enrichment of around 10 times and approximately 90% pure water recovery. The effective combination of both processes resulted in high efficiency, as well as economical and energy-saving benefits, as shown by the process performance and our preliminary techno-economic analysis. The specific energy consumption of the hybrid process projected to operate at a capacity of 2,000 m3h-1 was determined to be 8.8kWh m-3, or 0.56kWh kg-1 NH4Cl removed/recovered for an initial feed solution containing around 15,300ppm NH4Cl. Hybrid OARO and RO operation was able to achieve satisfactory enrichment by the OARO process and obtaining clean water by the RO process. The hybrid OARO-RO process has shown great potential as a suitable end-stage membrane-based process for wastewater dewatering and NH4N enrichment and recovery toward a circular economy and environmental management, as well as clean water recovery.


Assuntos
Águas Residuárias , Purificação da Água , Nitrogênio , Purificação da Água/métodos , Osmose , Membranas Artificiais , Água , Eliminação de Resíduos Líquidos/métodos
11.
Nat Commun ; 14(1): 1016, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823154

RESUMO

Nanochannels in laminated graphene oxide nanosheets featuring confined mass transport have attracted interest in multiple research fields. The use of nanochannels for reverse osmosis is a prospect for developing next-generation synthetic water-treatment membranes. The robustness of nanochannels under high-pressure conditions is vital for effectively separating water and ions with sub-nanometer precision. Although several strategies have been developed to address this issue, the inconsistent response of nanochannels to external conditions used in membrane processes has rarely been investigated. In this study, we develop a robust interlayer channel by balancing the associated chemistry and confinement stability to exclude salt solutes. We build a series of membrane nanochannels with similar physical dimensions but different channel functionalities and reveal their divergent deformation behaviors under different conditions. The deformation constraint effectively endows the nanochannel with rapid deformation recovery and excellent ion exclusion performance under variable pressure conditions. This study can help understand the deformation behavior of two-dimensional nanochannels in pressure-driven membrane processes and develop strategies for the corresponding deformation constraints regarding the pore wall and interior.

12.
Nanoscale ; 15(22): 9752-9758, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37219043

RESUMO

Urea pollution is a growing environmental concern, and its removal via catalytic hydrolysis is challenging due to the resonance-stabilized amide bonds. In nature, this reaction is catalyzed by ureases in many soil bacteria. However, the remedy of this problem with natural enzymes is not feasible as they are easily denatured and require high costs for both preparation and storage. Given this, the development of nanomaterials bearing enzyme-like activity (nanozymes) with advantages such as low production cost, simple storage, and pH/thermal stability has attracted much attention over the past decade. As inspired by the mechanism of urease-catalyzed urea hydrolysis, the co-presence of Lewis acid (LA) and Brønsted acid (BA) sites is imperative to proceed with this reaction. Herein, layered HNb3O8 samples with intrinsic BA sites were adopted for investigation. The layer reduction of this material to few-/single layers can expose Nb sites with various LA strengths depending on the degree of NbO6 distortion. Among the catalysts examined, single-layer HNb3O8 bearing strong LA and BA sites displays the best hydrolytic activity towards acetamide and urea. This sample with high thermal stability was found to outperform urease at temperatures higher than 50 °C. The acidity-activity correlation established in this study is believed to guide the future design of industrial catalysts to remediate urea pollution.

13.
ACS Omega ; 7(38): 33783-33792, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188311

RESUMO

For the first time, self-standing microfiltration (MF) hollow fiber membranes were prepared from cellulose triacetate (CTA) via the thermally induced phase separation (TIPS) method. The resultant membranes were compared with counterparts prepared from cellulose diacetate (CDA) and cellulose acetate propionate (CAP). Extensive solvent screening by considering the Hansen solubility parameters of the polymer and solvent, the polymer's solubility at high temperature, solidification of the polymer solution at low temperature, viscosity, and processability of the polymeric solution, is the most challenging issue for cellulose membrane preparation. Different phase separation mechanisms were identified for CTA, CDA, and CAP polymer solutions prepared using the screened solvents for membrane preparation. CTA solutions in binary organic solvents possessed the appropriate properties for membrane preparation via liquid-liquid phase separation, followed by a solid-liquid phase separation (polymer crystallization) mechanism. For the prepared CTA hollow fiber membranes, the maximum stress was 3-5 times higher than those of the CDA and CAP membranes. The temperature gap between the cloud point and crystallization onset in the polymer solution plays a crucial role in membrane formation. All of the CTA, CDA, and CAP membranes had a very porous bulk structure with a pore size of ∼100 nm or larger, as well as pores several hundred nanometers in size at the inner surface. Using an air gap distance of 0 mm, the appropriate organic solvents mixed in an optimized ratio, and a solvent for cellulose derivatives as the quench bath media, it was possible to obtain a CTA MF hollow fiber membrane with high pure water permeance and notably high rejection of 100 nm silica nanoparticles. It is expected that these membranes can play a great role in pharmaceutical separation.

14.
Membranes (Basel) ; 12(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36557106

RESUMO

For the first time, we have successfully fabricated microfiltration (MF) hollow fiber membranes by the thermally induced phase separation (TIPS) and non-solvent induced phase separation (NIPS) methods using cellulose acetate benzoate (CBzOH), which is a cellulose derivative with considerable chemical resistance. To obtain an appropriate CBzOH TIPS membrane, a comprehensive solvent screening was performed to choose the appropriate solvent to obtain a membrane with a porous structure. In parallel, the CBzOH membrane was prepared by the NIPS method to compare and evaluate the effect of membrane structure using the same polymer material. Prepared CBzOH membrane by TIPS method showed high porosity, pore size around 100 nm or larger and high pure water permeability (PWP) with slightly low rection performance compared to that by NIPS. On the contrary, CBzOH membranes prepared with the NIPS method showed three times lower PWP with higher rejection. The chemical resistance of the prepared CBzOH membranes was compared with that of cellulose triacetate (CTA) hollow fiber membrane, which is a typical cellulose derivative as a control membrane, using a 2000 ppm sodium hypochlorite (NaClO) solution. CBzOH membranes prepared with TIPS and NIPS methods showed considerable resistance against the NaClO solution regardless of the membrane structure, porosity and pore size. On the other hand, when the CTA membrane, as the control membrane, was subjected to the NaClO solution, membrane mechanical strength sharply decreased over the exposure time to NaClO. It is interesting that although the CBzOH TIPS membrane showed three times higher pure water permeability than other membranes with slightly lower rejection and considerably higher NaClO resistance, the mechanical strength of this membrane is more than two times higher than other membranes. While CBzOH samples showed no change in chemical structure and contact angle, CTA showed considerable change in chemical structure and a sharp decrease in contact angle after treatment with NaClO. Thus, CBzOH TIPS hollow fiber membrane is noticeably interesting considering membrane performance in terms of filtration performance, mechanical strength and chemical resistance on the cost of slightly losing rejection performance.

15.
Membranes (Basel) ; 11(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34564464

RESUMO

The use of an Amphotericin B_Ergosterol (AmBEr) channel as an artificial water channel in forward osmosis filtration (FO) was studied via molecular dynamics (MD) simulation. Three channel models were constructed: a common AmBEr channel and two modified C3deOAmB_Ergosterol (C3deOAmBEr) channels with different diameters (12 Å and 18 Å). During FO filtration simulation, the osmotic pressure of salt-water was a driving force for water permeation. We examined the effect of the modified C3deOAmBEr channel on the water transport performance. By tracing the change of the number of water molecules along with simulation time in the saltwater region, the water permeability of the channel models could be calculated. A higher water permeability was observed for a modified C3deOAmBEr channel, and there was no ion permeation during the entire simulation period. The hydrated ions and water molecules were placed into the channel to explore the ion leakage behavior of the channels. The mean squared displacement (MSD) of ions and water molecules was obtained to study the ion leakage performance. The Amphotericin B-based channels showed excellent selectivity of water molecules against ions. The results obtained on an atomistic scale could assist in determining the properties and the optimal filtration applications for Amphotericin B-based channels.

16.
Membranes (Basel) ; 11(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34436351

RESUMO

Forward osmosis (FO) membrane process is expected to realize energy-saving seawater desalination. To this end, energy-saving water recovery from a draw solution (DS) and effective DS regeneration are essential. Recently, thermo-responsive DSs have been developed to realize energy-saving water recovery and DS regeneration. We previously reported that high-temperature reverse osmosis (RO) treatment was effective in recovering water from a thermo-responsive ionic liquid (IL)-based DS. In this study, to confirm the advantages of the high-temperature RO operation, thermo-sensitive IL-based DS was treated by an RO membrane at temperatures higher than the lower critical solution temperature (LCST) of the DS. Tetrabutylammonium 2,4,6-trimethylbenznenesulfonate ([N4444][TMBS]) with an LCST of 58 °C was used as the DS. The high-temperature RO treatment was conducted at 60 °C above the LCST using the [N4444][TMBS]-based DS-lean phase after phase separation. Because the [N4444][TMBS]-based DS has a significantly temperature-dependent osmotic pressure, the DS-lean phase can be concentrated to an osmotic pressure higher than that of seawater at room temperature (20 °C). In addition, water can be effectively recovered from the DS-lean phase until the DS concentration increased to 40 wt%, and the final DS concentration reached 70 wt%. From the results, the advantages of RO treatment of the thermo-responsive DS at temperatures higher than the LCST were confirmed.

17.
Membranes (Basel) ; 11(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34940482

RESUMO

We report a new type of alkaline-stable hollow-fiber reverse osmosis (RO) membrane with an outside-in configuration that was established via adsorption of positively charged poly(vinyl alcohol) copolymers containing a small amount of quaternary ammonium moieties. Anionic sulfonated poly(arylene ether sulfone nitrile) hollow-fiber membranes were utilized as a substrate upon which the cationic copolymer layer was self-organized via electrostatic interaction. While the adsorption of the low-charge copolymer on the membrane support proceeded in a Layer-by-Layer (LbL) fashion, it was found that the adsorbed amount by one immersion step was enough to form a defect-free separation layer with a thickness of around 20 nm after cross-linking of vinyl alcohol units with glutaraldehyde. The resultant hollow-fiber membrane showed excellent desalination performances (NaCl rejection of 98.3% at 5 bar and 1500 mg/L), which is comparable with commercial low-pressure polyamide RO membranes, as well as good alkaline resistance. The separation performance could be restored by repeating the LbL treatment after alkaline degradation. Such features of LbL membranes may contribute to extending RO membrane lifetimes.

18.
Membranes (Basel) ; 10(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092187

RESUMO

In this study, the characteristics of different types of nanosheet membranes were reviewed in order to determine which possessed the optimum propensity for antifouling during water purification. Despite the tremendous amount of attention that nanosheets have received in recent years, their use to render membranes that are resistant to fouling has seldom been investigated. This work is the first to summarize the abilities of nanosheet membranes to alleviate the effect of organic and inorganic foulants during water treatment. In contrast to other publications, single nanosheets, or in combination with other nanomaterials, were considered to be nanostructures. Herein, a broad range of materials beyond graphene-based nanomaterials is discussed. The types of nanohybrid membranes considered in the present work include conventional mixed matrix membranes, stacked membranes, and thin-film nanocomposite membranes. These membranes combine the benefits of both inorganic and organic materials, and their respective drawbacks are addressed herein. The antifouling strategies of nanohybrid membranes were divided into passive and active categories. Nanosheets were employed in order to induce fouling resistance via increased hydrophilicity and photocatalysis. The antifouling properties that are displayed by two-dimensional (2D) nanocomposite membranes also are examined.

19.
Membranes (Basel) ; 10(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271851

RESUMO

Methyl gallate (MG) and ethyl ferulate (EF) with a benzene ring were separately used as aromatic organic chelating ligands (aOCLs) to prepare two versions of TiO2-ZrO2-aOCL composite sols via hydrolysis and polycondensation reactions with titanium(IV) isopropoxide (Ti(OC3H7)4) and zirconium(IV) butoxide (Zr(OC4H9)4). Thermogravimetric and FT-IR analysis of dry gels revealed that aromatic rings were present in the residual organic matter when the gel was fired under nitrogen at 300 °C. In X-ray diffraction (XRD) measurements, the TiO2-ZrO2 composite material prepared using these two aOCLs showed an amorphous structure with no crystalline peaks for TiO2 and ZrO2. In N2 adsorption/desorption measurements at 77 K, the TiO2-ZrO2 samples using the aOCLs as a template appeared porous with a larger specific surface area than TiO2-ZrO2 without aOCL. TiO2-ZrO2-aOCL composite membranes were prepared by coating and firing TiO2-ZrO2-aOCL sol onto a SiO2 intermediate layer using an α-alumina porous tube as a substrate. Compared with the TiO2-ZrO2 membrane, the TiO2-ZrO2-aOCL membranes had higher gas permselectivity. The TiO2-ZrO2-EF membrane showed a He permeance of 2.69 × 10-6 mol m-2 s-1 Pa-1 with permeance ratios of He/N2 = 10.6 and He/CF4 = 163, while the TiO2-ZrO2-MG membrane revealed a bit less He permeance at 8.56 × 10-7 mol m-2 s-1 Pa-1 with greater permeance ratios of He/N2 = 61.7 and He/CF4 = 209 at 200 °C. A microporous TiO2-ZrO2 amorphous structure was obtained by introducing aOCL. The differences in the side chains of each aOCL could possibly account for the differences in the microporous structures of the resultant TiO2-ZrO2-aOCL membranes.

20.
Membranes (Basel) ; 8(4)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563257

RESUMO

Polyamide (PA) membranes possess properties that allow for selective water permeation and salt rejection, and these are widely used for reverse osmotic (RO) desalination of sea water to produce drinking water. In order to design high-performance RO membranes with high levels of water permeability and salt rejection, an understanding of microscopic PA membrane structures is indispensable, and this includes water transport and ion rejection mechanisms on a molecular scale. In this study, two types of virtual PA membranes with different structures and densities were constructed on a computer, and water molecular transport properties through PA membranes were examined on a molecular level via direct reverse/forward osmosis (RO/FO) filtration molecular dynamics (MD) simulations. A quasi-non-equilibrium MD simulation technique that uses applied (RO mode) or osmotic (FO mode) pressure differences of several MPa was conducted to estimate water permeability through PA membranes. A simple NVT (Number, Volume, and Temperature constant ensemble)-RO MD simulation method was presented and verified. The simulations of RO and FO water permeability for a dense PA membrane model without a support layer agreed with the experimental value in the RO mode. This PA membrane completely rejected Na⁺ and Cl- ions during a simulation time of several nano-seconds. The naturally dense PA structure showed excellent ion rejection. The effect that the void size of PA structure exerted on water permeability was also examined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA