Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Biol Chem ; 300(2): 105640, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199569

RESUMO

Monoclonal antibodies are one of the fastest growing class of drugs. Nevertheless, relatively few biologics target multispanning membrane proteins because of technical challenges. To target relatively small extracellular regions of multiple membrane-spanning proteins, synthetic peptides, which are composed of amino acids corresponding to an extracellular region of a membrane protein, are often utilized in antibody discovery. However, antibodies to these peptides often do not recognize parental membrane proteins. In this study, we designed fusion proteins in which an extracellular helix of the membrane protein glucose transporter 1 (Glut1) was grafted onto the scaffold protein Adhiron. In the initial design, the grafted fragment did not form a helical conformation. Molecular dynamics simulations of full-length Glut1 suggested the importance of intramolecular interactions formed by surrounding residues in the formation of the helical conformation. A fusion protein designed to maintain such intramolecular interactions did form the desired helical conformation in the grafted region. We then immunized an alpaca with the designed fusion protein and obtained VHH (variable region of heavy-chain antibodies) using the phage display method. The binding of these VHH antibodies to the recombinant Glut1 protein was evaluated by surface plasmon resonance, and their binding to Glut1 on the cell membrane was further validated by flow cytometry. Furthermore, we also succeeded in the generation of a VHH against another integral membrane protein, glucose transporter 4 (Glut4) with the same strategy. These illustrates that our combined biochemical and computational approach can be applied to designing other novel fusion proteins for generating site-specific antibodies.


Assuntos
Proteínas de Membrana Transportadoras , Peptídeos , Anticorpos Monoclonais , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/imunologia , Imunização , Proteínas Recombinantes/química , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/imunologia
2.
J Biol Chem ; 299(9): 104927, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330175

RESUMO

Methicillin-resistant Staphylococcus aureus, or MRSA, is one of the major causative agents of hospital-acquired infections worldwide. Novel antimicrobial strategies efficient against antibiotic-resistant strains are necessary and not only against S. aureus. Among those, strategies that aim at blocking or dismantling proteins involved in the acquisition of essential nutrients, helping the bacteria to colonize the host, are intensively studied. A major route for S. aureus to acquire iron from the host organism is the Isd (iron surface determinant) system. In particular, the hemoglobin receptors IsdH and IsdB located on the surface of the bacterium are necessary to acquire the heme moiety containing iron, making them a plausible antibacterial target. Herein, we obtained an antibody of camelid origin that blocked heme acquisition. We determined that the antibody recognized the heme-binding pocket of both IsdH and IsdB with nanomolar order affinity through its second and third complementary-determining regions. The mechanism explaining the inhibition of acquisition of heme in vitro could be described as a competitive process in which the complementary-determining region 3 from the antibody blocked the acquisition of heme by the bacterial receptor. Moreover, this antibody markedly reduced the growth of three different pathogenic strains of MRSA. Collectively, our results highlight a mechanism for inhibiting nutrient uptake as an antibacterial strategy against MRSA.


Assuntos
Anticorpos Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Receptores de Superfície Celular , Anticorpos de Domínio Único , Humanos , Antibacterianos/farmacologia , Heme/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/uso terapêutico , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Antígenos de Bactérias/imunologia , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Camelídeos Americanos , Animais , Ligação Proteica/efeitos dos fármacos , Modelos Moleculares , Simulação de Dinâmica Molecular
3.
J Biol Chem ; 299(10): 105254, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716701

RESUMO

Listeriosis, caused by infection with Listeria monocytogenes, is a severe disease with a high mortality rate. The L. monocytogenes virulence factor, internalin family protein InlA, which binds to the host receptor E-cadherin, is necessary to invade host cells. Here, we isolated two single-domain antibodies (VHHs) that bind to InlA with picomolar affinities from an alpaca immune library using the phage display method. These InlA-specific VHHs inhibited the binding of InlA to the extracellular domains of E-cadherin in vitro as shown by biophysical interaction analysis. Furthermore, we determined that the VHHs inhibited the invasion of L. monocytogenes into host cells in culture. High-resolution X-ray structure analyses of the complexes of VHHs with InlA revealed that the VHHs bind to the same binding site as E-cadherin against InlA. We conclude that these VHHs have the potential for use as drugs to treat listeriosis.

4.
Biochem Biophys Res Commun ; 709: 149839, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38564943

RESUMO

Single-domain VHH antibody is regarded as one of the promising antibody classes for therapeutic and diagnostic applications. VHH antibodies have amino acids in framework region 2 that are distinct from those in conventional antibodies, such as the Val37Phe/Tyr (V37F/Y) substitution. Correlations between the residue type at position 37 and the conformation of the CDR3 in VHH antigen recognition have been previously reported. However, few studies focused on the meaning of harboring two residue types in position 37 of VHH antibodies, and the concrete roles of Y37 have been little to be elucidated. Here, we investigated the functional states of position 37 in co-crystal structures and performed analyses of three model antibodies with either F or Y at position 37. Our analysis indicates that Y at position 37 enhances the dissociation rate, which is highly correlated with drug efficacy. Our findings help to explain the molecular mechanisms that distinguish VHH antibodies from conventional antibodies.


Assuntos
Antígenos de Grupos Sanguíneos , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Anticorpos
5.
Biochem Biophys Res Commun ; 714: 149969, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657446

RESUMO

CD40 is a member of the tumor necrosis factor receptor superfamily, and it is widely expressed on immune and non-immune cell types. The interaction between CD40 and the CD40 ligand (CD40L) plays an essential function in signaling, and the CD40/CD40L complex works as an immune checkpoint molecule. CD40 has become a therapeutic target, and a variety of agonistic/antagonistic anti-CD40 monoclonal antibodies (mAbs) have been developed. To better understand the mode of action of anti-CD40 mAbs, we determined the X-ray crystal structures of dacetuzumab (agonist) and bleselumab (antagonist) in complex with the extracellular domain of human CD40, respectively. The structure reveals that dacetuzumab binds to CD40 on the top of cysteine-rich domain 1 (CRD1), which is the domain most distant from the cell surface, and it does not compete with CD40L binding. The binding interface of bleselumab spread between CRD2 and CRD1, overlapping with the binding surface of the ligand. Our results offer important insights for future structural and functional studies of CD40 and provide clues to understanding the mechanism of biological response. These data can be applied to developing new strategies for designing antibodies with more therapeutic efficacy.


Assuntos
Anticorpos Monoclonais Humanizados , Antígenos CD40 , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Sítios de Ligação , Antígenos CD40/química , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Ligante de CD40/química , Ligante de CD40/metabolismo , Ligante de CD40/imunologia , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica
6.
J Biol Chem ; 298(6): 101995, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500652

RESUMO

Staphylococcus aureus is a major cause of deadly nosocomial infections, a severe problem fueled by the steady increase of resistant bacteria. The iron surface determinant (Isd) system is a family of proteins that acquire nutritional iron from the host organism, helping the bacterium to proliferate during infection, and therefore represents a promising antibacterial target. In particular, the surface protein IsdH captures hemoglobin (Hb) and acquires the heme moiety containing the iron atom. Structurally, IsdH comprises three distinctive NEAr-iron Transporter (NEAT) domains connected by linker domains. The objective of this study was to characterize the linker region between NEAT2 and NEAT3 from various biophysical viewpoints and thereby advance our understanding of its role in the molecular mechanism of heme extraction. We demonstrate the linker region contributes to the stability of the bound protein, likely influencing the flexibility and orientation of the NEAT3 domain in its interaction with Hb, but only exerts a modest contribution to the affinity of IsdH for heme. Based on these data, we suggest that the flexible nature of the linker facilitates the precise positioning of NEAT3 to acquire heme. In addition, we also found that residues His45 and His89 of Hb located in the heme transfer route toward IsdH do not play a critical role in the transfer rate-determining step. In conclusion, this study clarifies key elements of the mechanism of heme extraction of human Hb by IsdH, providing key insights into the Isd system and other protein systems containing NEAT domains.


Assuntos
Antígenos de Bactérias , Heme , Ferro , Receptores de Superfície Celular , Staphylococcus aureus , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Heme/metabolismo , Hemoglobinas/química , Humanos , Ferro/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo
7.
J Biol Chem ; 298(6): 101962, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452676

RESUMO

Atypical hemolytic uremic syndrome (aHUS) is a disease associated with dysregulation of the immune complement system, especially of the alternative pathway (AP). Complement factor H (CFH), consisting of 20 domains called complement control protein (CCP1-20), downregulates the AP as a cofactor for mediating C3 inactivation by complement factor I. However, anomalies related to CFH are known to cause excessive complement activation and cytotoxicity. In aHUS, mutations and the presence of anti-CFH autoantibodies (AAbs) have been reported as plausible causes of CFH dysfunction, and it is known that CFH-related aHUS carries a high probability of end-stage renal disease. Elucidating the detailed functions of CFH at the molecular level will help to understand aHUS pathogenesis. Herein, we used biophysical data to reveal that a heavy-chain antibody fragment, termed VHH4, recognized CFH with high affinity. Hemolytic assays also indicated that VHH4 disrupted the protective function of CFH on sheep erythrocytes. Furthermore, X-ray crystallography revealed that VHH4 recognized the Leu1181-Leu1189CCP20 loop, a known anti-CFH AAbs epitope. We next analyzed the dynamics of the C-terminal region of CFH and showed that the epitopes recognized by anti-CFH AAbs and VHH4 were the most flexible regions in CCP18-20. Finally, we conducted mutation analyses to elucidate the mechanism of VHH4 recognition of CFH and revealed that VHH4 inserts the Trp1183CCP20 residue of CFH into the pocket formed by the complementary determining region 3 loop. These results suggested that anti-CFH AAbs may adopt a similar molecular mechanism to recognize the flexible loop of Leu1181-Leu1189CCP20, leading to aHUS pathogenesis.


Assuntos
Anticorpos Monoclonais/química , Síndrome Hemolítico-Urêmica Atípica , Fator H do Complemento/química , Síndrome Hemolítico-Urêmica Atípica/metabolismo , Autoanticorpos/imunologia , Ativação do Complemento , Epitopos , Humanos , Mutação
8.
Cancer Sci ; 114(1): 321-338, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36136061

RESUMO

Important roles of humoral tumor immunity are often pointed out; however, precise profiles of dominant antigens and developmental mechanisms remain elusive. We systematically investigated the humoral antigens of dominant intratumor immunoglobulin clones found in human cancers. We found that approximately half of the corresponding antigens were restricted to strongly and densely negatively charged polymers, resulting in simultaneous reactivities of the antibodies to both densely sulfated glycosaminoglycans (dsGAGs) and nucleic acids (NAs). These anti-dsGAG/NA antibodies matured and expanded via intratumoral immunological driving force of innate immunity via NAs. These human cancer-derived antibodies exhibited acidic pH-selective affinity across both antigens and showed specific reactivity to diverse spectrums of human tumor cells. The antibody-drug conjugate exerted therapeutic effects against multiple cancers in vivo by targeting cell surface dsGAG antigens. This study reveals that intratumoral immunological reactions propagate tumor-oriented immunoglobulin clones and demonstrates a new therapeutic modality for the universal treatment of human malignancies.


Assuntos
Neoplasias , Ácidos Nucleicos , Humanos , Epitopos , Antígenos , Neoplasias/terapia , Anticorpos , Antígenos de Superfície , Concentração de Íons de Hidrogênio
9.
Biochem Biophys Res Commun ; 682: 174-179, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37820452

RESUMO

Interleukin-11 (IL-11) is a member of the interleukin-6 (IL-6) family of cytokines. IL-11 is a regulator of multiple events in hematopoiesis, and IL-11-mediated signaling is implicated in inflammatory disease, cancer, and fibrosis. All IL-6 family cytokines signal through the signal-transducing receptor, glycoprotein 130 (gp130), but these cytokines have distinct as well as overlapping biological functions. To understand IL-11 signaling at the molecular level, we performed a comprehensive interaction analysis of the IL-11 signaling complex, comparing it with the IL-6 complex, one of the best-characterized cytokine complexes. Our thermodynamic analysis revealed a clear difference between IL-11 and IL-6. Surface plasmon resonance analysis showed that the interaction between IL-11 and IL-11 receptor α (IL-11Rα) is entropy driven, whereas that between IL-6 and IL-6 receptor α (IL-6Rα) is enthalpy driven. Our analysis using isothermal titration calorimetry revealed that the binding of gp130 to the IL-11/IL-11Rα complex results in entropy loss, but that the interaction of gp130 with the IL-6/IL-6Rα complex results in entropy gain. Our hydrogen-deuterium exchange mass spectrometry experiments suggested that the D2 domain of gp130 was not involved in IL-6-like interactions in the IL-11/IL-11Rα complex. It has been reported that IL-6 interaction with gp130 in the signaling complex was characterized through the hydrophobic interface located in its D2 domain of gp130. Our findings suggest that unique interactions of the IL-11 signaling complex with gp130 are responsible for the distinct biological activities of IL-11 compared to IL-6.


Assuntos
Interleucina-11 , Interleucina-6 , Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Citocinas , Glicoproteínas
10.
Biochem Biophys Res Commun ; 676: 141-148, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37516031

RESUMO

Cation diffusion facilitators (CDFs) are a large family of divalent metal transporters with broad specificities that contribute to intracellular metal homeostasis and toxicity in bacterial pathogens. Streptococcus pyogenes (Group A Streptococcus [GAS]) expresses two homologous CDF efflux transporters, MntE and CzcD, which selectively transport Mn and Zn, respectively. We discovered that the MntE- and CzcD-deficient strains exhibited a marked decrease in the viability of macrophage-differentiated THP-1 cells and neutrophils. In addition, the viability of mice infected with both deficient strains markedly increased. Consistent with a previous study, our results suggest that MntE regulates the PerR-dependent oxidative stress response by maintaining intracellular Mn levels and contributing to the growth of GAS. The maturation and proteolytic activity of streptococcal cysteine protease (SpeB), an important virulence factor in GAS, has been reported to be abrogated by zinc and copper. Zn inhibited the maturation and proteolytic activity of SpeB in the culture supernatant of the CzcD-deficient strain. Furthermore, Mn inhibited SpeB maturation and proteolytic activity in a MntE-deficient strain. Since the host pathogenicity of the SpeB-deficient strain was significantly reduced, maintenance of intracellular manganese and zinc levels in the GAS via MntE and CzcD may not only confer metal resistance to the bacterium, but may also play an essential role in its virulence. These findings provide new insights into the molecular mechanisms of pathogenicity, which allow pathogens to survive under stressful conditions associated with elevated metal ion concentrations during host infection.


Assuntos
Evasão da Resposta Imune , Streptococcus pyogenes , Animais , Camundongos , Streptococcus pyogenes/metabolismo , Metais/metabolismo , Zinco/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Cátions Bivalentes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
11.
Biochem Biophys Res Commun ; 663: 54-60, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119766

RESUMO

Single-domain antibodies, or VHH, nanobodies, are attractive tools in biotechnology and pharmaceuticals due to their favorable biophysical properties. Single-domain antibodies have potential for use in sensing materials to detect antigens, and in this paper, we propose a generic design strategy of single-domain antibodies for the highly efficient use of immobilized antibodies on a sensing substrate. Amine coupling was used to immobilize the single-domain antibodies on the substrate through a robust covalent bond. First, for two model single-domain antibodies with lysines at four highly conserved positions (K48, K72, K84, and K95), we mutated the lysines to alanine and measured the binding activity of the mutants (the percentage of immobilized antibodies that can bind antigen) using surface plasmon resonance. The two model single-domain antibodies tended to have higher binding activities when K72, which is close to the antigen binding site, was mutated. Adding a Lys-tag to the C-terminus of single-domain antibodies also increased the binding activity. We also mutated the lysine for another model single-domain antibodies with the lysine in a different position than the four residues mentioned above and measured the binding activity. Thus, single-domain antibodies immobilized in an orientation accessible to the antigen tended to have a high binding activity, provided that the physical properties of the single-domain antibodies themselves (affinity and structural stability) were not significantly reduced. Specifically, the design strategy of single-domain antibodies with high binding activity included mutating the lysine at or near the antigen binding site, adding a Lys-tag to the C-terminus, and mutating a residue away from the antigen binding site to lysine. It is noteworthy that mutating K72 close to the antigen binding site was more effective in increasing the binding activity than Lys-tag addition, and immobilization at the N-terminus close to the antigen binding site did not have such a negative effect on the binding activity compared to immobilization at the K72.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Ressonância de Plasmônio de Superfície , Anticorpos Imobilizados/química , Anticorpos Imobilizados/metabolismo , Lisina , Biotecnologia , Antígenos
12.
Chembiochem ; 24(14): e202300221, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37232370

RESUMO

Collimonas sp. (D-25), found in the soil of Akita Prefecture, is a gram-negative bacterium with the ability to synthesize gold nanoparticles (AuNPs). During the synthesis of AuNPs, one specific protein (DP-1) was found to have disappeared in the sonicated solution of the bacterium. Recombinant DP-1 (rDP-1) from Escherichia coli BL21 (DE3) was used to study the effect of DP-1 on the synthesis of AuNPs. AuNPs synthesized with rDP-1 result in small, stabilized nanoparticles. AuNPs synthesized by DP-1 retained the stability of both the dispersion and nano-size particles under high salt concentrations. Isothermal titration calorimetry was employed to investigate the bonding ratio of rDP-1 to AuNPs. Several thousand rDP-1 proteins are attached to the surface of an AuNP to form a protein corona containing multiple layers. These results suggest that DP-1 obtained from D-25 has a size and stability control function during AuNP synthesis.


Assuntos
Nanopartículas Metálicas , Coroa de Proteína , Ouro/química , Nanopartículas Metálicas/química , Bactérias/metabolismo , Tamanho da Partícula
13.
J Nanobiotechnology ; 21(1): 36, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721182

RESUMO

BACKGROUND: Although a large amount of evidence has revealed that amyloid ß (Aß), especially Aß oligomers, protofibrils, and pyroglutamated Aßs, participate primarily in the pathophysiological processes of Alzheimer's disease, most clinical trials of anti-Aß antibody therapy have never acquired successful efficacy in human clinical trials, partly because peripheral administration of antibody medications was unable to deliver sufficient amounts of the molecules to the brain. Recently, we developed polymeric nanomicelles capable of passing through the blood-brain barrier that function as chaperones to deliver larger amounts of heavy molecules to the brain. Herein, we aimed to evaluate the efficacy of newly developed antibody 6H4 fragments specific to Aß oligomers encapsulated in polymeric nanomicelles on the development of Alzheimer's disease pathology in Alzheimer's disease model mice at the age of emergence of early Alzheimer's disease pathology. RESULTS: During the 10-week administration of 6H4 antibody fragments in polymeric nanomicelles, a significant reduction in the amounts of various toxic Aß species, such as Aß oligomers, toxic Aß conformers, and pyroglutamated Aßs in the brain was observed. In addition, immunohistochemistry indicated inhibition of diameters of Aß plaques, Aß-antibody immunoreactive areas, and also plaque core formation. Behavioral analysis of the mice model revealed that the 6H4 fragments-polymeric nanomicelle group was significantly better at maintaining long-term spatial reference memory in the probe and platform tests of the water maze, thereby indicating inhibition of the pathophysiological process of Alzheimer's disease. CONCLUSIONS: The results indicated that the strategy of reducing toxic Aß species in early dementia owing to Alzheimer's disease by providing sufficient antibodies in the brain may modify Alzheimer's disease progression.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Encéfalo , Barreira Hematoencefálica , Anticorpos , Placa Amiloide , Polímeros
14.
J Biol Chem ; 296: 100278, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428936

RESUMO

Proline and arginine-rich end leucine-rich repeat protein (PRELP) is a member of the small leucine-rich repeat proteoglycans (SLRPs) family. Levels of PRELP mRNA are downregulated in many types of cancer, and PRELP has been reported to have suppressive effects on tumor cell growth, although the molecular mechanism has yet to be fully elucidated. Given that other SLRPs regulate signaling pathways through interactions with various membrane proteins, we reasoned that PRELP likely interacts with membrane proteins to maintain cellular homeostasis. To identify membrane proteins that interact with PRELP, we carried out coimmunoprecipitation coupled with mass spectrometry (CoIP-MS). We prepared membrane fractions from Expi293 cells transfected to overexpress FLAG-tagged PRELP or control cells and analyzed samples precipitated with anti-FLAG antibody by mass spectrometry. Comparison of membrane proteins in each sample identified several that seem to interact with PRELP; among them, we noted two growth factor receptors, insulin-like growth factor I receptor (IGFI-R) and low-affinity nerve growth factor receptor (p75NTR), interactions with which might help to explain PRELP's links to cancer. We demonstrated that PRELP directly binds to extracellular domains of these two growth factor receptors with low micromolar affinities by surface plasmon resonance analysis using recombinant proteins. Furthermore, cell-based analysis using recombinant PRELP protein showed that PRELP suppressed cell growth and affected cell morphology of A549 lung carcinoma cells, also at micromolar concentration. These results suggest that PRELP regulates cellular functions through interactions with IGFI-R and p75NTR and provide a broader set of candidate partners for further exploration.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas da Matriz Extracelular/genética , Glicoproteínas/genética , Proteínas do Tecido Nervoso/genética , Receptores de Fator de Crescimento Neural/genética , Células A549 , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteômica/métodos , RNA Mensageiro , Proteínas Recombinantes/genética
15.
J Biol Chem ; 297(3): 101054, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34364873

RESUMO

Liver intestine (LI)-cadherin is a member of the cadherin superfamily, which encompasses a group of Ca2+-dependent cell-adhesion proteins. The expression of LI-cadherin is observed on various types of cells in the human body, such as normal small intestine and colon cells, and gastric cancer cells. Because its expression is not observed on normal gastric cells, LI-cadherin is a promising target for gastric cancer imaging. However, because the cell adhesion mechanism of LI-cadherin has remained unknown, rational design of therapeutic molecules targeting this cadherin has been hampered. Here, we have studied the homodimerization mechanism of LI-cadherin. We report the crystal structure of the LI-cadherin homodimer containing its first four extracellular cadherin repeats (EC1-4). The EC1-4 homodimer exhibited a unique architecture different from that of other cadherins reported so far, driven by the interactions between EC2 of one protein chain and EC4 of the second protein chain. The crystal structure also revealed that LI-cadherin possesses a noncanonical calcium ion-free linker between the EC2 and EC3 domains. Various biochemical techniques and molecular dynamics simulations were employed to elucidate the mechanism of homodimerization. We also showed that the formation of the homodimer observed in the crystal structure is necessary for LI-cadherin-dependent cell adhesion by performing cell aggregation assays. Taken together, our data provide structural insights necessary to advance the use of LI-cadherin as a target for imaging gastric cancer.


Assuntos
Caderinas/química , Caderinas/metabolismo , Caderinas/genética , Adesão Celular , Agregação Celular , Cristalografia por Raios X , Dimerização , Humanos , Domínios Proteicos , Estrutura Terciária de Proteína
16.
J Biol Chem ; 296: 100176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303630

RESUMO

Proteins are modulated by a variety of posttranslational modifications including methylation. Despite its importance, the majority of protein methylation modifications discovered by mass spectrometric analyses are functionally uncharacterized, partly owing to the difficulty in obtaining reliable methylsite-specific antibodies. To elucidate how functional methylsite-specific antibodies recognize the antigens and lead to the development of a novel method to create such antibodies, we use an immunized library paired with phage display to create rabbit monoclonal antibodies recognizing trimethylated Lys260 of MAP3K2 as a representative substrate. We isolated several methylsite-specific antibodies that contained unique complementarity determining region sequence. We characterized the mode of antigen recognition by each of these antibodies using structural and biophysical analyses, revealing the molecular details, such as binding affinity toward methylated/nonmethylated antigens and structural motif that is responsible for recognition of the methylated lysine residue, by which each antibody recognized the target antigen. In addition, the comparison with the results of Western blotting analysis suggests a critical antigen recognition mode to generate cross-reactivity to protein and peptide antigen of the antibodies. Computational simulations effectively recapitulated our biophysical data, capturing the antibodies of differing affinity and specificity. Our exhaustive characterization provides molecular architectures of functional methylsite-specific antibodies and thus should contribute to the development of a general method to generate functional methylsite-specific antibodies by de novo design.


Assuntos
Anticorpos Monoclonais/química , Antígenos/química , Fragmentos Fab das Imunoglobulinas/química , Lisina/química , MAP Quinase Quinase Quinase 2/química , Peptídeos/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Afinidade de Anticorpos , Especificidade de Anticorpos , Antígenos/genética , Antígenos/imunologia , Sítios de Ligação , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Reações Cruzadas , Cristalografia por Raios X , Humanos , Fragmentos Fab das Imunoglobulinas/biossíntese , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Cinética , Lisina/imunologia , MAP Quinase Quinase Quinase 2/genética , MAP Quinase Quinase Quinase 2/imunologia , Metilação , Simulação de Dinâmica Molecular , Biblioteca de Peptídeos , Peptídeos/genética , Peptídeos/imunologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Coelhos
17.
Biochem Biophys Res Commun ; 565: 1-7, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34077827

RESUMO

Streptococcus pyogenes causes a wide range of human infections. Currently, antibiotics are the main treatment for S. pyogenes infection, but serious anti-microbial resistance requires alternative treatment options. To develop a novel strategy for treatment, we physicochemically characterized SPs0871, a putative maltose/maltodextrin-binding protein that is thought to have important roles in the pathogenesis of invasive streptococci. We obtained a variable domain of heavy chain of heavy-chain antibody, the smallest unit of an antibody, which specifically binds to SPs0871. Although the VHH completely inhibited the binding of maltodextrins to SPs0871, the inhibition did not lead to growth suppression of the bacteria. Our results provide important insights for development of VHH as an anti-streptococcal therapeutic.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Cadeias Pesadas de Imunoglobulinas/farmacologia , Polissacarídeos/antagonistas & inibidores , Streptococcus pyogenes/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/química , Cadeias Pesadas de Imunoglobulinas/química , Testes de Sensibilidade Microbiana , Polissacarídeos/química , Streptococcus pyogenes/química
18.
Biochem Biophys Res Commun ; 566: 177-183, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34129965

RESUMO

Streptococcus pyogenes (Group A Streptococcus, GAS) causes a range of human diseases, including life-threatening and severe invasive GAS infections, such as streptococcal toxic shock syndrome (STSS). Several antibiotics, including penicillin, are effective against GAS. Still, invasive GAS diseases have a high mortality rate (>30%). Clinical isolates from STSS patients show higher expression of pore-forming streptolysin O (SLO). Thus, SLO is an important pathogenic factor for GAS and may be an effective target for treatment of GAS disease. We succeeded in obtaining a single-chain variable fragment (scFv) SLO-I4 capable of recognizing SLO, which significantly inhibited GAS-induced cell lytic activity in erythrocytes, macrophages, and epithelial cells. In epithelial cells, SLO-I4 significantly reduced SLO-mediated endosomal membrane damage, which consequently prevented bacterial escape from the endosome. The effectiveness of anti-SLO scFv in counteracting SLO function suggests that it might be beneficial against GAS infections.


Assuntos
Anticorpos de Cadeia Única/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Estreptolisinas/imunologia , Proteínas de Bactérias/imunologia , Células HeLa , Hemólise , Humanos
19.
Arch Biochem Biophys ; 663: 71-82, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30615852

RESUMO

Interleukin-18 (IL-18) is a pro-inflammatory cytokine that evokes both innate and acquired immune responses. IL-18 is initially synthesized as an inactive precursor and the cleavage for processing into a mature, active molecule is mediated by pro-inflammatory caspases following the activation of inflammasomes. Two types of monoclonal antibodies were raised: anti-IL-1863-68 antibodies which recognize full-length1-193 and cleaved IL-18; and anti-IL-18 neoepitope antibodies which specifically recognize the new N-terminal 37YFGKLESK44 of IL-18 cleaved by pro-inflammatory caspase-1/4. These mAbs were suitable for Western blotting, capillary Western immunoassay (WES), immunofluorescence, immunoprecipitation, and function-blocking assays. WES analysis of these mAbs allowed visualization of the IL-18 bands and provided a molecular weight corresponding to the pro-inflammatory caspase-1/4 cleaved, active form IL-1837-193, and not to the inactive precursor IL-18, in the serum of patients with adult-onset Still's disease (6/14, 42%) and hemophagocytic activation syndrome (2/6, 33%). These monoclonal antibodies will be very useful in IL-18 and inflammasome biology and for diagnostic and therapeutic strategies for inflammatory diseases.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Caspases/metabolismo , Mediadores da Inflamação/imunologia , Interleucina-18/imunologia , Afinidade de Anticorpos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-18/metabolismo , Proteólise
20.
Biotechnol Bioeng ; 116(7): 1742-1751, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883677

RESUMO

Upon developing therapeutically potent antibodies, there are significant requirements, such as increasing their affinity, regulating their epitope, and using native target antigens. Many antibody selection systems, such as a phage display method, have been developed, but it is still difficult to fulfill these requirements at the same time. Here, we propose a novel epitope-directed antibody affinity maturation system utilizing mammalian cell survival as readout. This system is based on the competition of antibody binding, and can target membrane proteins expressed in a native form on a mammalian cell surface. Using this system, we successfully selected an affinity-matured anti-ErbB2 single-chain variable fragment variant, which had the same epitope as the original one. In addition, the affinity was increased mainly due to the decrease in the dissociation rate. This novel cell-based antibody affinity maturation system could contribute to directly obtaining therapeutically potent antibodies that are functional on the cell surface.


Assuntos
Epitopos/metabolismo , Citometria de Fluxo , Receptor ErbB-2/metabolismo , Anticorpos de Cadeia Única , Linhagem Celular , Sobrevivência Celular , Humanos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA