Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 135(30): 11125-30, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23802735

RESUMO

For the development of a rechargeable metal-air battery, which is expected to become one of the most widely used batteries in the future, slow kinetics of discharging and charging reactions at the air electrode, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively, are the most critical problems. Here we report that Ruddlesden-Popper-type layered perovskite, RP-LaSr3Fe3O10 (n = 3), functions as a reversible air electrode catalyst for both ORR and OER at an equilibrium potential of 1.23 V with almost no overpotentials. The function of RP-LaSr3Fe3O10 as an ORR catalyst was confirmed by using an alkaline fuel cell composed of Pd/LaSr3Fe3O10-2x(OH)2x·H2O/RP-LaSr3Fe3O10 as an open circuit voltage (OCV) of 1.23 V was obtained. RP-LaSr3Fe3O10 also catalyzed OER at an equilibrium potential of 1.23 V with almost no overpotentials. Reversible ORR and OER are achieved because of the easily removable oxygen present in RP-LaSr3Fe3O10. Thus, RP-LaSr3Fe3O10 minimizes efficiency losses caused by reactions during charging and discharging at the air electrode and can be considered to be the ORR/OER electrocatalyst for rechargeable metal-air batteries.

2.
Chem Commun (Camb) ; 58(36): 5542-5545, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35436781

RESUMO

The capacitances of porous carbon anodes were determined using a Ni(OH)2 cathode. We found that the capacitances were 300-700 F g-1 and above 3 times those of the carbon anodes prepared by electrical double layer formation, revealing the large capacitances based on protium H adsorption in the presence of highly concentrated KOH solution.

3.
J Am Chem Soc ; 133(10): 3498-506, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21341772

RESUMO

A molybdenum-dinitrogen complex bearing two ancillary ferrocenyldiphosphine ligands, trans-[Mo(N(2))(2)(depf)(2)] (depf = 1,1'-bis(diethylphosphino)ferrocene), catalyzes the conversion of molecular dinitrogen (N(2)) into silylamine (N(SiMe(3))(3)), which can be readily converted into NH(3) by acid treatment. The conversion has been achieved in the presence of Me(3)SiCl and Na at room temperature with a turnover number (TON) of 226 for the N(SiMe(3))(3) generation for 200 h. This TON is significantly improved relative to those ever reported by Hidai's group for mononuclear molybdenum complexes having monophosphine coligands [J. Am. Chem. Soc.1989, 111, 1939]. Density functional theory (DFT) calculations have been performed to figure out the mechanism of the catalytic N(2) conversion. On the basis of some pieces of experimental information, SiMe(3) radical is assumed to serve as an active species in the catalytic cycle. Calculated results also support that SiMe(3) radical is capable of working as an active species. The formation of five-coordinate intermediates, in which one of the N(2) ligands or one of the Mo-P bonds is dissociated, is essential in an early stage of the N(2) conversion. The SiMe(3) addition to a "hydrazido(2-)" intermediate having the NN(SiMe(3))(2) group will give a "hydrazido(1-)" intermediate having the (Me(3)Si)NN(SiMe(3))(2) group rather than a pair of a nitrido (≡N) intermediate and N(SiMe(3))(3). The N(SiMe(3))(3) generation would not occur at the Mo center but proceed after the (Me(3)Si)NN(SiMe(3))(2) group is released from the Mo center. The flexibility of the Mo-P bond between Mo and depf would play a vital role in the high catalysis of the Mo-Fe complex.

4.
Small ; 1(11): 1088-93, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17193401

RESUMO

Temperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity, working temperature range, and, most importantly, their simplicity and accuracy of temperature reading. In this work, we demonstrate the ultimate miniaturization of the classic thermometer using an expanding column of liquid gallium inside a multi-walled C nanotube for precise temperature measurements. We report that electrical conductivity through unfilled nanotube regions is diffusive with a resistance per unit length of approximately 10 kOmega microm(-1), whereas Ga-filled segments of the nanotube show metallic behavior with a low resistance of approximately 100 Omega microm(-1). No noticeable Schottky barrier exists between the nanotube carbon shell and the inner Ga filling. Based on these findings, an individual carbon nanotube partially filled with liquid Ga is used as a temperature sensor and/or switch. The nanotube's electrical resistance decreases linearly with increasing temperature as the metallic Ga column expands inside the tube channel. In addition, the tube resistance drops sharply when two encapsulated Ga columns approaching each other meet inside the nanotube, producing a switching action that can occur at any predetermined temperature, as the Ga column position inside the nanotube can be effectively pre-adjusted by nanoindentation using an atomic force microscope.


Assuntos
Gálio/química , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Nanotubos de Carbono/química , Técnicas Biossensoriais , Difusão , Condutividade Elétrica , Eletroquímica/métodos , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotubos/química , Semicondutores , Temperatura
5.
J Phys Chem B ; 109(23): 11580-4, 2005 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16852421

RESUMO

It is impossible to fabricate isolated gallium nanomaterials due to the low melting point of Ga (29.8 degrees C) and its high reactivity. We report the bulk synthesis of uniform liquid Ga columns encapsulated into carbon nanotubes through high-temperature chemical reaction between Ga and CH4. The diameter of filled Ga liquid columns is approximately 25 nm, and their length is up to several micrometers. The thickness of the carbon sheaths is approximately 6 nm. Simultaneous condensation of a Ga vapor and carbon clusters results in the generation of Ga-filled carbon nanotubes. A convergent 300 kV electron beam generated in a field emission high-resolution electron microscope is demonstrated to be a powerful tool for delicate manipulation of the liquid Ga nanocolumns: they can be gently joined, cut, and sealed within carbon nanotubes. The self-organization of a carbon sheath during the electron-beam irradiation is discussed. The electron-beam irradiation may also become a decent tool for Ga-filled carbon nanotube thermometer calibration.

7.
Nat Chem ; 3(7): 546-50, 2011 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-21697876

RESUMO

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to σ-orbital (e(g)) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the σ orbital and metal-oxygen covalency on the competition between O(2)(2-)/OH(-) displacement and OH(-) regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA