Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33249686

RESUMO

The leaching of dissolved organic carbon (DOC) from soils to the river network is an overlooked component of the terrestrial soil C budget. Measurements of DOC concentrations in soil, runoff and drainage are scarce and their spatial distribution highly skewed towards industrialized countries. The contribution of terrestrial DOC leaching to the global-scale C balance of terrestrial ecosystems thus remains poorly constrained. Here, using a process based, integrative, modelling approach to upscale from existing observations, we estimate a global terrestrial DOC leaching flux of 0.28 ± 0.07 Gt C year-1 which is conservative, as it only includes the contribution of mineral soils. Our results suggest that globally about 15% of the terrestrial Net Ecosystem Productivity (NEP, calculated as the difference between Net Primary Production and soil respiration) is exported to aquatic systems as leached DOC. In the tropical rainforest, the leached fraction of terrestrial NEP even reaches 22%. Furthermore, we simulated spatial-temporal trends in DOC leaching from soil to the river networks from 1860 to 2010. We estimated a global increase in terrestrial DOC inputs to river network of 35 Tg C year-1 (14%) from 1860 to 2010. Despite their low global contribution to the DOC leaching flux, boreal regions have the highest relative increase (28%) while tropics have the lowest relative increase (9%) over the historical period (1860s compared to 2000s). The results from our observationally constrained model approach demonstrate that DOC leaching is a significant flux in the terrestrial C budget at regional and global scales.

2.
Sci Total Environ ; 917: 170560, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301790

RESUMO

Dissolved organic carbon (DOC) represents a critical component of terrestrial carbon (C) cycling and is a key contributor to the carbon flux between land and aquatic systems. Historically, the quantification of environmental factors influencing DOC leaching has been underexplored, with a predominant focus on land use changes as the main driver. In this study, the process-based terrestrial ecosystem model JULES-DOCM was utilized to simulate the spatiotemporal patterns of DOC leaching into the global river network from 1860 to 2010. This study reveals a 17 % increment in DOC leaching to rivers, reaching 292 Tg C yr-1 by 2010, with atmospheric CO2 fertilization identified as the primary controlling factor, significantly enhancing DOC production and leaching following increased vegetation productivity and soil carbon stocks. To specifically quantify the contribution of CO2 fertilization, a factorial simulation approach was employed that isolated the effects of CO2 from other potential drivers of change. The research highlights distinct regional responses. While globally CO2 fertilization is the dominant factor, in boreal regions, climate change markedly influences DOC dynamics, at times exceeding the impact of CO2. Temperate and sub-tropical areas exhibit similar trends in DOC leaching, largely controlled by CO2 fertilization, while climate change showed an indirect effect through modifications in runoff patterns. In contrast, the tropics show a relatively low increase in DOC leaching, which can be related to alterations in soil moisture and temperature. Additionally, the study re-evaluates the role of land use change in DOC leaching, finding its effect to be considerably smaller than previously assumed. These insights emphasize the dominant roles of CO2 fertilization and climate change in modulating DOC leaching, thereby refining our understanding of terrestrial carbon dynamics and their broader implications on the global C budget.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA