Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076945

RESUMO

We investigated the effects of the crystalline state for seed layers (SLs) on the growth morphology and material characteristics for hydrothermally grown ZnO nanorods (NRs). For this, preheating (PH) at different temperatures (100-300 °C) and O2 plasma treatment (PT) for 9 min were performed during the growth of SLs on p-Si by the aqueous solution-based method to provide the characteristic change on the NR growth platform. An improvement in material properties was achieved from the ZnO NRs grown on the SL crystals of enhanced crystalline quality in terms of the increased preferred orientation (002), the higher UV emission with suppressed deep-level emissions, the recovery of O/Zn stoichiometry, and the reduction of various intrinsic defects. Ultraviolet photodiodes of a p-Si/n-ZnO-NR structure fabricated under the SL conditions of O2 PT and PH at 100 °C showed a significantly enhanced on-off current ratio of ~90 at +5 V and faster photoresponse characteristics presenting a reduction in the fall time from 16 to 9 s.


Assuntos
Nanotubos , Óxido de Zinco , Nanotubos/química , Sementes , Água/química , Óxido de Zinco/química
2.
Opt Express ; 28(19): 27688-27701, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988057

RESUMO

We demonstrate an improvement in the photoresponse characteristics of ultraviolet (UV) photodetectors (PDs) using the N2O plasma-treated ZnO nanorod (NR) gated AlGaN/GaN high electron mobility transistor (HEMT) structure. The PDs fabricated with ZnO NRs plasma-treated for 6 min show superior performance in terms of responsivity (∼1.54×10 5 A/W), specific detectivity (∼ 4.7×1013 cm·Hz-1/2/W), and on/off current ratio (∼40). These improved performance parameters are the best among those from HEMT-based PDs reported to date. Photoluminescence analysis shows a significant enhancement in near band edge emission due to the effective suppression of native defects near the surface of ZnO NRs after plasma treatment. As our X-ray photoelectron spectroscopy reveals a very high O/Zn ratio of ∼0.96 from the NR samples plasma-treated for 6 min, the N2O plasma radicals also show a clear impact on ZnO stoichiometry. From our X-ray diffraction analysis, the plasma-treated ZnO NRs show much greater improvement in (002) peak intensity and degree of (002) orientation (∼0.996) than those of as-grown NRs. This significant enhancement in (002) degree of orientation and stoichiometry in ZnO nano-crystals contribute to the enhancement in photoresponse characteristics of the PDs.

3.
Nanomaterials (Basel) ; 11(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443842

RESUMO

The crystalline quality of ZnO NR (nanorod) as a sensing material for visible blind ultraviolet PDs (photodetectors) critically depends on the SL (seed layer) material of properties, which is a key to high-quality nanocrystallite growth, more so than the synthesis method. In this study, we fabricated two different device structures of a gateless AlGaN/GaN HEMT (high electron mobility transistor) and a photoconductive PD structure with an IDE (interdigitated electrode) pattern implemented on a PET (polyethylene terephthalate) flexible substrate, and investigated the impact on device performance through the SL N2O plasma treatment. In case of HEMT-based PD, the highest current on-off ratio (~7) and spectral responsivity R (~1.5 × 105 A/W) were obtained from the treatment for 6 min, whereas the IDE pattern-based PD showed the best performance (on-off ratio = ~44, R = ~69 A/W) from the treatment for 3 min and above, during which a significant etch damage on PET substrates was produced. This improvement in device performance was due to the enhancement in NR crystalline quality as revealed by our X-ray diffraction, photoluminescence, and microanalysis.

4.
Nanomaterials (Basel) ; 10(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585985

RESUMO

A growth scheme at a low processing temperature for high crystalline-quality of ZnO nanostructures can be a prime stepping stone for the future of various optoelectronic devices manufactured on transparent plastic substrates. In this study, ZnO nanorods (NRs) grown by the hydrothermal method at 150 °C through doping of transition metals (TMs), such as Co, Ni, or Co-plus-Ni, on polyethylene terephthalate substrates were investigated by various surface analysis methods. The TM dopants in ZnO NRs suppressed the density of various native defect-states as revealed by our photoluminescence and X-ray photoelectron spectroscopy analysis. Further investigation also showed the doping into ZnO NRs brought about a clear improvement in carrier mobility from 0.81 to 3.95 cm2/V-s as well as significant recovery in stoichiometric contents of oxygen. Ultra-violet photodetectors fabricated with Co-plus-Ni codoped NRs grown on an interdigitated electrode structure exhibited a high spectral response of ~137 A/W, on/off current ratio of ~135, and an improvement in transient response speed with rise-up and fall-down times of ~2.2 and ~3.1 s, respectively.

5.
Nanomaterials (Basel) ; 9(8)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349615

RESUMO

As a developing technology for flexible electronic device fabrication, ultra-violet (UV) photodetectors (PDs) based on a ZnO nanostructure are an effective approach for large-area integration of sensors on nonconventional substrates, such as plastic or paper. However, photoconductive ZnO nanorods grown on flexible substrates have slow responses or recovery as well as low spectral responsivity R because of the native defects and inferior crystallinity of hydrothermally grown ZnO nanorods at low temperatures. In this study, ZnO nanorod crystallites are doped with Cu or Ni/Cu when grown on polyethylene terephthalate (PET) substrates in an attempt to improve the performance of flexible PDs. The doping with Ni/Cu or Cu not only improves the crystalline quality but also significantly suppresses the density of deep-level emission defects in as-grown ZnO nanorods, as demonstrated by X-ray diffraction and photoluminescence. Furthermore, the X-ray photoelectron spectroscopy analysis shows that doping with the transition metals significantly increases the oxygen bonding with metal ions with enhanced O/Zn stoichiometry in as-grown nanorods. The fabricated flexible PD devices based on an interdigitated electrode structure demonstrates a very high R of ~123 A/W, a high on-off current ratio of ~130, and a significant improvement in transient response speed exhibiting rise and fall time of ~8 and ~3 s, respectively, by using the ZnO nanorods codoped by Ni/Cu.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA