Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; 19(8): e2205881, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504329

RESUMO

Two-dimensional layered transition metal dichalcogenides have emerged as promising materials for supercapacitors and hydrogen evolution reaction (HER) applications. Herein, the molybdenum sulfide (MoS2 )@vanadium sulfide (VS2 ) and tungsten sulfide (WS2 )@VS2  hybrid nano-architectures prepared via a facile one-step hydrothermal approach is reported. Hierarchical hybrids lead to rich exposed active edge sites, tuned porous nanopetals-decorated morphologies, and high intrinsic activity owing to the strong interfacial interaction between the two materials. Fabricated supercapacitors using MoS2 @VS2  and WS2 @VS2  electrodes exhibit high specific capacitances of 513 and 615 F g- 1 , respectively, at an applied current of 2.5 A g- 1  by the three-electrode configuration. The asymmetric device fabricated using WS2 @VS2  electrode exhibits a high specific capacitance of 222 F g- 1  at an applied current of 2.5 A g- 1  with the specific energy of 52 Wh kg- 1  at a specific power of 1 kW kg- 1 . For HER, the WS2 @VS2  catalyst shows noble characteristics with an overpotential of 56 mV to yield 10 mA cm- 2 , a Tafel slope of 39 mV dec-1 , and an exchange current density of 1.73 mA cm- 2 . In addition, density functional theory calculations are used to evaluate the durable heterostructure formation and adsorption of hydrogen atom on the various accessible sites of MoS2 @VS2  and WS2 @VS2  heterostructures.

2.
Nano Lett ; 20(6): 4337-4345, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32369373

RESUMO

Owing to their high Li+ conductivities, mechanical sinterability, and solution processability, sulfide Li argyrodites have attracted much attention as enablers in the development of high-performance all-solid-state batteries with practicability. However, solution-processable Li argyrodites have been developed only for a composition of Li6PS5X (X = Cl, Br, I) with insufficiently high Li+ conductivities (∼10-4 S cm-1). Herein, we report the highest Li+ conductivity of 0.54 mS cm-1 at 30 °C (Li6.5P0.5Ge0.5S5I) for solution-processable iodine-based Li argyrodites. A comparative investigation of three iodine-based argyrodites of unsubstituted and Ge- and Sn-substituted solution-processed Li6PS5I with varied heat-treatment temperature elucidates the effect of microstructural evolution on Li+ conductivity. Notably, local nanostructures consisting of argyrodite nanocrystallites in solution-processed Li6.5P0.5Ge0.5S5I have been directly captured by cryogenic transmission electron microscopy, which is a first for sulfide solid electrolyte materials. Specifically, the promising electrochemical performances of all-solid-state batteries at 30 °C employing LiCoO2 electrodes tailored by the infiltration of Li6.5P0.5Ge0.5S5I-ethanol solutions are successfully demonstrated.

3.
Small ; 12(18): 2510-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27008436

RESUMO

Tin sulfide (SnS) 3D flowers containing hierarchical nanosheet subunits are synthesized using a simple polyol process. The Li ion cells incorporating SnS 3D flowers exhibit an excellent rate capability, as well as good cycling stability, compared to SnS bulks and Sn nanoparticles. These desirable properties can be attributed to their unique morphology having not only large surface reaction area but also enough space between individual 2D nanosheets, which alleviates the pulverization of SnS.

4.
J Am Chem Soc ; 136(17): 6385-94, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24678996

RESUMO

A combination of density functional theory (DFT) calculations and experiments is used to shed light on the relation between surface structure and Li-ion storage capacities of the following functionalized two-dimensional (2D) transition-metal carbides or MXenes: Sc2C, Ti2C, Ti3C2, V2C, Cr2C, and Nb2C. The Li-ion storage capacities are found to strongly depend on the nature of the surface functional groups, with O groups exhibiting the highest theoretical Li-ion storage capacities. MXene surfaces can be initially covered with OH groups, removable by high-temperature treatment or by reactions in the first lithiation cycle. This was verified by annealing f-Nb2C and f-Ti3C2 at 673 and 773 K in vacuum for 40 h and in situ X-ray adsorption spectroscopy (XAS) and Li capacity measurements for the first lithiation/delithiation cycle of f-Ti3C2. The high-temperature removal of water and OH was confirmed using X-ray diffraction and inelastic neutron scattering. The voltage profile and X-ray adsorption near edge structure of f-Ti3C2 revealed surface reactions in the first lithiation cycle. Moreover, lithiated oxygen terminated MXenes surfaces are able to adsorb additional Li beyond a monolayer, providing a mechanism to substantially increase capacity, as observed mainly in delaminated MXenes and confirmed by DFT calculations and XAS. The calculated Li diffusion barriers are low, indicative of the measured high-rate performance. We predict the not yet synthesized Cr2C to possess high Li capacity due to the low activation energy of water formation at high temperature, while the not yet synthesized Sc2C is predicted to potentially display low Li capacity due to higher reaction barriers for OH removal.

5.
Nat Mater ; 12(12): 1130-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185759

RESUMO

Metal fluorides/oxides (MF(x)/M(x)O(y)) are promising electrodes for lithium-ion batteries that operate through conversion reactions. These reactions are associated with much higher energy densities than intercalation reactions. The fluorides/oxides also exhibit additional reversible capacity beyond their theoretical capacity through mechanisms that are still poorly understood, in part owing to the difficulty in characterizing structure at the nanoscale, particularly at buried interfaces. This study employs high-resolution multinuclear/multidimensional solid-state NMR techniques, with in situ synchrotron-based techniques, to study the prototype conversion material RuO2. The experiments, together with theoretical calculations, show that a major contribution to the extra capacity in this system is due to the generation of LiOH and its subsequent reversible reaction with Li to form Li2O and LiH. The research demonstrates a protocol for studying the structure and spatial proximities of nanostructures formed in this system, including the amorphous solid electrolyte interphase that grows on battery electrodes.

6.
Inorg Chem ; 53(13): 6585-95, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24914731

RESUMO

Lithium iron borate (LiFeBO3) has a high theoretical specific capacity (220 mAh/g), which is competitive with leading cathode candidates for next-generation lithium-ion batteries. However, a major factor making it difficult to fully access this capacity is a competing oxidative process that leads to degradation of the LiFeBO3 structure. The pristine, delithiated, and degraded phases of LiFeBO3 share a common framework with a cell volume that varies by less than 2%, making it difficult to resolve the nature of the delithiation and degradation mechanisms by conventional X-ray powder diffraction studies. A comprehensive study of the structural evolution of LiFeBO3 during (de)lithiation and degradation was therefore carried out using a wide array of bulk and local structural characterization techniques, both in situ and ex situ, with complementary electrochemical studies. Delithiation of LiFeBO3 starts with the production of LitFeBO3 (t ≈ 0.5) through a two-phase reaction, and the subsequent delithiation of this phase to form Lit-xFeBO3 (x < 0.5). However, the large overpotential needed to drive the initial two-phase delithiation reaction results in the simultaneous observation of further delithiated solid-solution products of Lit-xFeBO3 under normal conditions of electrochemical cycling. The degradation of LiFeBO3 also results in oxidation to produce a Li-deficient phase D-LidFeBO3 (d ≈ 0.5, based on the observed Fe valence of ∼2.5+). However, it is shown through synchrotron X-ray diffraction, neutron diffraction, and high-resolution transmission electron microscopy studies that the degradation process results in an irreversible disordering of Fe onto the Li site, resulting in the formation of a distinct degraded phase, which cannot be electrochemically converted back to LiFeBO3 at room temperature. The Li-containing degraded phase cannot be fully delithiated, but it can reversibly cycle Li (D-Lid+yFeBO3) at a thermodynamic potential of ∼1.8 V that is substantially reduced relative to the pristine phase (∼2.8 V).

7.
Gels ; 10(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391452

RESUMO

Gels are attracting materials for energy storage technologies. The strategic development of hydrogels with enhanced physicochemical properties, such as superior mechanical strength, flexibility, and charge transport capabilities, introduces novel prospects for advancing next-generation batteries, fuel cells, and supercapacitors. Through a refined comprehension of gelation chemistry, researchers have achieved notable progress in fabricating hydrogels endowed with stimuli-responsive, self-healing, and highly stretchable characteristics. This mini-review delineates the integration of hydrogels into batteries, fuel cells, and supercapacitors, showcasing compelling instances that underscore the versatility of hydrogels, including tailorable architectures, conductive nanostructures, 3D frameworks, and multifunctionalities. The ongoing application of creative and combinatorial approaches in functional hydrogel design is poised to yield materials with immense potential within the domain of energy storage.

8.
Gels ; 10(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38920928

RESUMO

At the forefront of advanced material technology, radiation-induced hydrogels present a promising avenue for innovation across various sectors, utilizing gamma radiation, electron beam radiation, and UV radiation. Through the unique synthesis process involving radiation exposure, these hydrogels exhibit exceptional properties that make them highly versatile and valuable for a multitude of applications. This paper focuses on the intricacies of the synthesis methods employed in creating these radiation-induced hydrogels, shedding light on their structural characteristics and functional benefits. In particular, the paper analyzes the diverse utility of these hydrogels in biomedicine and agriculture, showcasing their potential for applications such as targeted drug delivery, injury recovery, and even environmental engineering solutions. By analyzing current research trends and highlighting potential future directions, this review aims to underscore the transformative impact that radiation-induced hydrogels could have on various industries and the advancement of biomedical and agricultural practices.

9.
ACS Appl Mater Interfaces ; 16(8): 10104-10115, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38361321

RESUMO

Hierarchical porous nanowire-like MoS2/CoNiO2 nanohybrids were synthesized via the hydrothermal process. CoNiO2 nanowires were selected due to the edge site, high surface/volume ratio, and superior electrochemical characteristics as the porous backbone for decoration of layered MoS2 nanoflakes to construct innovative structure hierarchical three-dimensional (3D) porous NWs MoS2/CoNiO2 hybrids with excellent charge accumulation and efficient ion transport capabilities. Physicochemical analyses were conducted on the developed hybrid composite, revealing conclusive evidence that the CoNiO2 nanowires have been securely anchored onto the surface of the MoS2 nanoflake array. The electrochemical results strongly proved the benefit of the hierarchical 3D porous MoS2/CoNiO2 hybrid structure for the charge storage kinetics. The synergistic characteristics arising from the MoS2/CoNiO2 composite yielded a notably high specific capacitance of 1340 F/g at a current density of 0.5 A/g. Furthermore, the material exhibited sustained cycling stability, retaining 95.6% of its initial capacitance after 10 000 long cycles. The asymmetric device comprising porous MoS2/CoNiO2//activated carbon encompassed outstanding energy density (93.02 Wh/kg at 0.85 kW/kg) and cycling stability (94.1% capacitance retention after 10 000 cycles). Additionally, the successful illumination of light-emitting diodes underscores the significant potential of the synthesized MoS2/CoNiO2 (2D/1D) hybrid for practical high-energy storage applications.

10.
Nano Lett ; 12(7): 3483-90, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22681539

RESUMO

While pseudocapacitors represent a promising option for electrical energy storage, the performance of the existing ones must be dramatically enhanced to meet today's ever-increasing demands for many emerging applications. Here we report a nanostructured, mixed-valent manganese oxide film that exhibits anomalously high specific capacitance (∼2530 F/g of manganese oxide, measured at 0.61 A/g in a two-electrode configuration with loading of active materials ∼0.16 mg/cm(2)) while maintaining excellent power density and cycling life. The dramatic performance enhancement is attributed to its unique mixed-valence state with porous nanoarchitecture, which may facilitate rapid mass transport and enhance surface double-layer capacitance, while promoting facile redox reactions associated with charge storage by both Mn and O sites, as suggested by in situ X-ray absorption spectroscopy (XAS) and density functional theory calculations. The new charge storage mechanisms (in addition to redox reactions of cations) may offer critical insights to rational design of a new-generation energy storage devices.

11.
ACS Catal ; 13(10): 6661-6674, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37229434

RESUMO

We examine the performance of a number of single-atom M-N/C electrocatalysts with a common structure in order to deconvolute the activity of the framework N/C support from the metal M-N4 sites in M-N/Cs. The formation of the N/C framework with coordinating nitrogen sites is performed using zinc as a templating agent. After the formation of the electrically conducting carbon-nitrogen metal-coordinating network, we (trans)metalate with different metals producing a range of different catalysts (Fe-N/C, Co-N/C, Ni-N/C, Sn-N/C, Sb-N/C, and Bi-N/C) without the formation of any metal particles. In these materials, the structure of the carbon/nitrogen framework remains unchanged-only the coordinated metal is substituted. We assess the performance of the subsequent catalysts in acid, near-neutral, and alkaline environments toward the oxygen reduction reaction (ORR) and ascribe and quantify the performance to a combination of metal site activity and activity of the carbon/nitrogen framework. The ORR activity of the carbon/nitrogen framework is about 1000-fold higher in alkaline than it is in acid, suggesting a change in mechanism. At 0.80 VRHE, only Fe and Co contribute ORR activity significantly beyond that provided by the carbon/nitrogen framework at all pH values studied. In acid and near-neutral pH values (pH 0.3 and 5.2, respectively), Fe shows a 30-fold improvement and Co shows a 5-fold improvement, whereas in alkaline pH (pH 13), both Fe and Co show a 7-fold improvement beyond the baseline framework activity. The site density of the single metal atom sites is estimated using the nitrite adsorption and stripping method. This method allows us to deconvolute the framework sites and metal-based active sites. The framework site density of catalysts is estimated as 7.8 × 1018 sites g-1. The metal M-N4 site densities in Fe-N/C and Co-N/C are 9.4 × 1018 sites-1 and 4.8 × 1018 sites g-1, respectively.

12.
Dalton Trans ; 52(46): 17061-17083, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37861455

RESUMO

Lithium-ion batteries (LIBs) remain at the forefront of energy research due to their capability to deliver high energy density. Understanding their degradation mechanism has been essential due to their rapid engagement in modern electric vehicles (EVs), where battery failure may incur huge losses to human life and property. The literature on this intimidating issue is rapidly growing and often very complex. This review strives to succinctly present current knowledge contributing to a more comprehensible understanding of the degradation mechanism. First, this review explains the fundamentals of LIBs and various degradation mechanisms. Then, the degradation mechanism of novel Li-rich cathodes, advanced characterization techniques for identifying it, and various theoretical models are presented and discussed. We emphasize that the degradation process is not only tied to the charge-discharge cycles; synthesis-induced stress also plays a vital role in catalyzing the degradation. Finally, we propose further studies on advanced battery materials that can potentially replace the layered cathodes.

13.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903783

RESUMO

Enhancing the participation of the lattice oxygen mechanism (LOM) in several perovskites to significantly boost the oxygen evolution reaction (OER) is daunting. With the rapid decline in fossil fuels, energy research is turning toward water splitting to produce usable hydrogen by significantly reducing overpotential for other half-cells' OER. Recent studies have shown that in addition to the conventional adsorbate evolution mechanism (AEM), participation of LOM can overcome their prevalent scaling relationship limitations. Here, we report the acid treatment strategy and bypass the cation/anion doping strategy to significantly enhance LOM participation. Our perovskite demonstrated a current density of 10 mA cm-2 at an overpotential of 380 mV and a low Tafel slope (65 mV dec-1) much lower than IrO2 (73 mV dec-1). We propose that the presence of nitric acid-induced defects regulates the electronic structure and thereby lowers oxygen binding energy, allowing enhanced LOM participation to boost OER significantly.

14.
Nanomaterials (Basel) ; 13(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38063745

RESUMO

While formamidinium lead iodide (FAPbI3) halide perovskite (HP) exhibits improved thermal stability and a wide band gap, its practical applicability is chained due to its room temperature phase transition from pure black (α-phase) to a non-perovskite yellow (δ-phase) when exposed to humidity. This phase transition is due to the fragile ionic bonding between the cationic and anionic parts of HPs during their formation. Herein, we report the synthesis of water-stable, red-light-emitting α-phase FAPbI3 nanocrystals (NCs) using five different amines to overcome these intrinsic phase instabilities. The structural, morphological, and electronic characterization were obtained using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and X-ray photoelectron spectroscopy (XPS), respectively. The photoluminescence (PL) emission and single-particle imaging bear the signature of dual emission in several amines, indicating a self-trapped excited state. Our simple strategy to stabilize the α-phase using various amine interfacial interactions could provide a better understanding and pave the way for a novel approach for the stabilization of perovskites for prolonged durations and their multifunctional applications.

15.
Gels ; 10(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38247747

RESUMO

Grid-scale energy storage applications can benefit from rechargeable sodium-ion batteries. As a potential material for making non-cobalt, nickel-free, cost-effective cathodes, earth-abundant Na2/3Fe1/2Mn1/2O2 is of particular interest. However, Mn3+ ions are particularly susceptible to the Jahn-Teller effect, which can lead to an unstable structure and continuous capacity degradation. Modifying the crystal structure by aliovalent doping is considered an effective strategy to alleviate the Jahn-Teller effect. Using a sol-gel synthesis route followed by heat treatment, we succeeded in preparing an Mg-doped Na2/3Fe1-yMnyO2 cathode. Its electrochemical properties and charge compensation mechanism were then studied using synchrotron-based X-ray absorption spectroscopy and in situ X-ray diffraction techniques. The results revealed that Mg doping reduced the number of Mn3+ Jahn-Teller centers and alleviated high voltage phase transition. However, Mg doping was unable to suppress the P2-P'2 phase transition at a low voltage discharge. An initial discharge capacity of about 196 mAh g-1 was obtained at a current density of 20 mAh g-1, and 60% of rate capability was maintained at a current density of 200 mAh g-1 in a voltage range of 1.5-4.3 V. This study will greatly contribute to the ongoing search for advanced and efficient cathodes from earth-abundant elements for rechargeable sodium-ion batteries operable at room temperature.

16.
Nanomaterials (Basel) ; 13(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38133053

RESUMO

A solid-solution cathode of LiCoPO4-LiNiPO4 was investigated as a potential candidate for use with the Li4Ti5O12 (LTO) anode in Li-ion batteries. A pre-synthesized nickel-cobalt hydroxide precursor is mixed with lithium and phosphate sources by wet ball milling, which results in the final product, LiNiyCo1-yPO4 (LNCP) by subsequent heat treatment. Crystal structure and morphology of the product were analyzed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Its XRD patterns show that LNCP is primarily a single-phase compound and has olivine-type XRD patterns similar to its parent compounds, LiCoPO4 and LiNiPO4. Synchrotron X-ray absorption spectroscopy (XAS) analysis, however, indicates that Ni doping in LiCoPO4 is unfavorable because Ni2+ is not actively involved in the electrochemical reaction. Consequently, it reduces the charge storage capability of the LNCP cathode. Additionally, ex situ XRD analysis of cycled electrodes confirms the formation of the electrochemically inactive rock salt-type NiO phase. The discharge capacity of the LNCP cathode is entirely associated with the Co3+/Co2+ redox couple. The electrochemical evaluation demonstrated that the LNCP cathode paired with the LTO anode produced a 3.12 V battery with an energy density of 184 Wh kg-1 based on the cathode mass.

17.
Nat Commun ; 14(1): 2459, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117172

RESUMO

Designing highly conductive and (electro)chemical stable inorganic solid electrolytes using cost-effective materials is crucial for developing all-solid-state batteries. Here, we report halide nanocomposite solid electrolytes (HNSEs) ZrO2(-ACl)-A2ZrCl6 (A = Li or Na) that demonstrate improved ionic conductivities at 30 °C, from 0.40 to 1.3 mS cm-1 and from 0.011 to 0.11 mS cm-1 for Li+ and Na+, respectively, compared to A2ZrCl6, and improved compatibility with sulfide solid electrolytes. The mechanochemical method employing Li2O for the HNSEs synthesis enables the formation of nanostructured networks that promote interfacial superionic conduction. Via density functional theory calculations combined with synchrotron X-ray and 6Li nuclear magnetic resonance measurements and analyses, we demonstrate that interfacial oxygen-substituted compounds are responsible for the boosted interfacial conduction mechanism. Compared to state-of-the-art Li2ZrCl6, the fluorinated ZrO2-2Li2ZrCl5F HNSE shows improved high-voltage stability and interfacial compatibility with Li6PS5Cl and layered lithium transition metal oxide-based positive electrodes without detrimentally affecting Li+ conductivity. We also report the assembly and testing of a Li-In||LiNi0.88Co0.11Mn0.01O2 all-solid-state lab-scale cell operating at 30 °C and 70 MPa and capable of delivering a specific discharge of 115 mAh g-1 after almost 2000 cycles at 400 mA g-1.

18.
Small Methods ; 6(2): e2100888, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35174991

RESUMO

Sodium-ion batteries (SIBs) hold great potential for use in large-scale grid storage applications owing to their low energy cost compared to lithium analogs. The symmetrical SIBs employing Na3 V2 (PO4 )3 (NVP) as both the cathode and anode are considered very promising due to negligible volume changes and longer cycle life. However, the structural changes associated with the electrochemical reactions of symmetrical SIBs employing NVP have not been widely studied. Previous studies on symmetrical SIBs employing NVP are believed to undergo one mole of Na+ storage during the electrochemical reaction. However, in this study, it is shown that there are significant differences during the electrochemical reaction of the symmetrical NVP system. The symmetrical sodium-ion cell undergoes ≈2 moles of Na+ reaction (intercalation and deintercalation) instead of 1 mole of Na+ . A simultaneous formation of Na5 V2 (PO4 )3 phase in the anode and NaV2 (PO4 )3 phase in the cathode is revealed by synchrotron-based X-ray diffraction and X-ray absorption spectroscopy. A symmetrical NVP cell can deliver a stable capacity of ≈99 mAh g-1 , (based on the mass of the cathode) by simultaneously utilizing V3+ /V2+ redox in anode and V3+ /V4+ redox in cathode. The current study provides new insights for the development of high-energy symmetrical NIBs for future use.

19.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36615919

RESUMO

Cation-disordered rocksalt (DRX) cathodes have been viewed as next-generation high-energy density materials surpassing conventional layered cathodes for lithium-ion battery (LIB) technology. Utilizing the opportunity of a better cation mixing facility in DRX, we synthesize Na-doped DRX as an efficient electrocatalyst toward oxygen evolution reaction (OER). This novel OER electrocatalyst generates a current density of 10 mA cm−2 at an overpotential (η) of 270 mV, Tafel slope of 67.5 mV dec−1, and long-term stability >5.5 days' superior to benchmark IrO2 (η = 330 mV with Tafel slope = 74.8 mV dec−1). This superior electrochemical behavior is well supported by experiment and sparse Gaussian process potential (SGPP) machine learning-based search for minimum energy structure. Moreover, as oxygen binding energy (OBE) on the surface closely relates to OER activity, our density functional theory (DFT) calculations reveal that Na-doping assists in facile O2 evolution (OBE = 5.45 eV) compared with pristine-DRX (6.51 eV).

20.
Adv Sci (Weinh) ; 9(23): e2201896, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35661447

RESUMO

Activation of oxygen redox during the first cycle has been reported as the main trigger of voltage hysteresis during further cycles in high-energy-density Li-rich 3d-transition-metal layered oxides. However, it remains unclear whether hysteresis only occurs due to oxygen redox. Here, it is identified that the voltage hysteresis can highly correlate to cationic reduction during discharge in the Li-rich layered oxide, Li1.2 Ni0.4 Mn0.4 O2 . In this material, the potential region of discharge accompanied by hysteresis is apparently separated from that of discharge unrelated to hysteresis. The quantitative analysis of soft/hard X-ray absorption spectroscopies discloses that hysteresis is associated with an incomplete cationic reduction of Ni during discharge. The galvanostatic intermittent titration technique shows that the inevitable energy consumption caused by hysteresis corresponds to an overpotential of 0.3 V. The results unveil that hysteresis can also be affected by cationic redox in Li-rich layered cathodes, implying that oxygen redox cannot be the only reason for the evolution of voltage hysteresis. Therefore, appropriate control of both cationic and anionic redox of Li-rich layered oxides will allow them to reach their maximum energy density and efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA