Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Phys Rev Lett ; 127(21): 217004, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860085

RESUMO

Hybridization of Bogoliubov quasiparticles (BQPs) between the CuO_{2} layers in the triple-layer cuprate high-temperature superconductor Bi_{2}Sr_{2}Cu_{2}Cu_{3}O_{10+δ} is studied by angle-resolved photoemission spectroscopy (ARPES). In the superconducting state, an anticrossing gap opens between the outer- and inner-BQP bands, which we attribute primarily to interlayer single-particle hopping with possible contributions from interlayer Cooper pairing. We find that the d-wave superconducting gap of both BQP bands smoothly develops with momentum without an abrupt jump in contrast to a previous ARPES study. Hybridization between the BQPs also gradually increases in going from the off nodal to the antinodal region, which is explained by the momentum dependence of the interlayer single-particle hopping. As possible mechanisms for the enhancement of the superconducting transition temperature, the hybridization between the BQPs as well as the combination of phonon modes of the triple CuO_{2} layers and spin fluctuations represented by a four-well model are discussed.

2.
J Synchrotron Radiat ; 24(Pt 4): 836-841, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28664891

RESUMO

A rotatable high-resolution angle-resolved photoemission spectroscopy (ARPES) system has been developed to utilize tunable linear-polarization geometries on the linear undulator beamline (BL-1) at Hiroshima Synchrotron Radiation Center. By rotating the whole ARPES measurement system, the photoelectron detection plane can be continuously changed from parallel to normal against the electric field vector of linearly polarized undulator radiation. This polarization tunability enables us to identify the symmetry of the initial electronic states with respect to the mirror planes, and to selectively observe the electronic states based on the dipole selection rule in the photoemission process. Specifications of the rotatable high-resolution ARPES system are described, as well as its capabilities with some representative experimental results.

3.
Phys Rev Lett ; 117(24): 247001, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-28009182

RESUMO

We use a surface-selective angle-resolved photoemission spectroscopy and unveil the electronic nature on the topmost layer of Sr_{2}RuO_{4} crystal, consisting of slightly rotated RuO_{6} octahedrons. The γ band derived from the 4d_{xy} orbital is found to be about three times narrower than that for the bulk. This strongly contrasts with a subtle variation seen in the α and ß bands derived from the one-dimensional 4d_{xz/yz}. This anomaly is reproduced by the dynamical mean-field theory calculations, introducing not only the on-site Hubbard interaction but also the significant Hund's coupling. We detect a coherence-to-incoherence crossover theoretically predicted for Hund's metals, which has been recognized only recently. The crossover temperature in the surface is about half that of the bulk, indicating that the naturally generated monolayer of reconstructed Sr_{2}RuO_{4} is extremely correlated and well isolated from the underlying crystal.

4.
Phys Rev Lett ; 117(23): 236402, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982650

RESUMO

The topology of pure Bi is controversial because of its very small (∼10 meV) band gap. Here we perform high-resolution angle-resolved photoelectron spectroscopy measurements systematically on 14-202 bilayer Bi films. Using high-quality films, we succeed in observing quantized bulk bands with energy separations down to ∼10 meV. Detailed analyses on the phase shift of the confined wave functions precisely determine the surface and bulk electronic structures, which unambiguously show nontrivial topology. The present results not only prove the fundamental property of Bi but also introduce a capability of the quantum-confinement approach.

5.
Phys Rev Lett ; 112(7): 076802, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579623

RESUMO

We study the manipulation of the spin polarization of photoemitted electrons in Bi2Se3 by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the photoelectron spin-polarization. We demonstrate the ± 100% reversal of a single component of the measured spin-polarization vector upon the rotation of light polarization, as well as full three-dimensional manipulation by varying experimental configuration and photon energy. While a material-specific density-functional theory analysis is needed for the quantitative description, a minimal yet fully generalized two-atomic-layer model qualitatively accounts for the spin response based on the interplay of optical selection rules, photoelectron interference, and topological surface-state complex structure. It follows that photoelectron spin-polarization control is generically achievable in systems with a layer-dependent, entangled spin-orbital texture.

6.
Nat Mater ; 10(7): 521-6, 2011 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-21685900

RESUMO

There has been increasing interest in phenomena emerging from relativistic electrons in a solid, which have a potential impact on spintronics and magnetoelectrics. One example is the Rashba effect, which lifts the electron-spin degeneracy as a consequence of spin-orbit interaction under broken inversion symmetry. A high-energy-scale Rashba spin splitting is highly desirable for enhancing the coupling between electron spins and electricity relevant for spintronic functions. Here we describe the finding of a huge spin-orbit interaction effect in a polar semiconductor composed of heavy elements, BiTeI, where the bulk carriers are ruled by large Rashba-like spin splitting. The band splitting and its spin polarization obtained by spin- and angle-resolved photoemission spectroscopy are well in accord with relativistic first-principles calculations, confirming that the spin splitting is indeed derived from bulk atomic configurations. Together with the feasibility of carrier-doping control, the giant-Rashba semiconductor BiTeI possesses excellent potential for application to various spin-dependent electronic functions.

7.
Phys Rev Lett ; 109(6): 066404, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23006289

RESUMO

We reveal a "high-energy anomaly" (HEA) in the band dispersion of the unconventional ruthenate superconductor Sr2RuO4, by means of high-resolution angle-resolved photoemission spectroscopy (ARPES) with tunable energy and polarization of incident photons. This observation provides another class of correlated materials exhibiting this anomaly beyond high-T(c) cuprates. We demonstrate that two distinct types of band renormalization associated with and without the HEA occur as a natural consequence of the energetics in the bandwidth and the energy scale of the HEA. Our results are well reproduced by a simple analytical form of the self-energy based on the Fermi-liquid theory, indicating that the HEA exists at a characteristic energy scale of the multielectron excitations. We propose that the HEA universally emerges if the systems have such a characteristic energy scale inside of the bandwidth.

8.
Phys Rev Lett ; 108(6): 066808, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401107

RESUMO

The surface of W(110) exhibits a Dirac-cone-like state with d character within a spin-orbit-induced symmetry gap. As a function of the wave vector parallel to the surface, it shows a nearly massless energy dispersion and a pronounced spin polarization, which is antisymmetric with respect to the Brillouin zone center. In addition, the observed constant energy contours are strongly anisotropic for all energies. This discovery opens new pathways to the study of surface spin-density waves arising from a strong Fermi surface nesting as well as d-electron-based topological properties.

9.
Phys Rev Lett ; 109(16): 166802, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215110

RESUMO

Helical spin textures with marked spin polarizations of topological surface states have been unveiled for the first time by state-of-the-art spin- and angle-resolved photoemission spectroscopy for two promising topological insulators, Bi(2)Te(2)Se and Bi(2)Se(2)Te. Their highly spin-polarized natures are found to be persistent across the Dirac point in both compounds. This novel finding paves a pathway to extending the utilization of topological surface states of these compounds for future spintronic applications.

10.
Phys Rev Lett ; 108(20): 206803, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23003165

RESUMO

The experimental evidence is presented of the topological insulator state in PbBi2Te4. A single surface Dirac cone is observed by angle-resolved photoemission spectroscopy with synchrotron radiation. Topological invariants Z2 are calculated from the ab initio band structure to be 1;(111). The observed two-dimensional isoenergy contours in the bulk energy gap are found to be the largest among the known three-dimensional topological insulators. This opens a pathway to achieving a sufficiently large spin current density in future spintronic devices.

11.
Phys Rev Lett ; 107(5): 056803, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21867088

RESUMO

We have performed scanning tunneling microscopy and differential tunneling conductance (dI/dV) mapping for the surface of the three-dimensional topological insulator Bi(2)Se(3). The fast Fourier transformation applied to the dI/dV image shows an electron interference pattern near Dirac node despite the general belief that the backscattering is well suppressed in the bulk energy gap region. The comparison of the present experimental result with theoretical surface and bulk band structures shows that the electron interference occurs through the scattering between the surface states near the Dirac node and the bulk continuum states.

12.
Phys Rev Lett ; 105(22): 226406, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21231406

RESUMO

Using polarization- and hν-dependent angle-resolved photoemission spectroscopy, we uncovered the fine details of a quasiparticle's dynamics of a typical multiband superconductor, Sr2RuO4. We found strong hybridization between the in-plane and out-of-plane quasiparticles via the Coulomb and spin-orbit interactions. This effect enhances the quasiparticle mass due to the inflow of out-of-plane quasiparticles into the two-dimensional Fermi surface sheet, where the quasiparticles are further subjected to the multiple electron-boson interactions. We suggest that the spin-triplet p-wave superconductivity of Sr2RuO4 is phonon mediated.

13.
Phys Rev Lett ; 104(17): 177002, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20482128

RESUMO

In the heavily-electron-doped regime of the Ba(Fe,Co)2As2 superconductor, three hole bands at the zone center are observed and two of them reach the Fermi level. The larger hole pocket at the zone center is apparently nested with the smaller electron pocket around the zone corner. However, the (pi,0) Fermi surface reconstruction reported for the hole-doped case is absent in the heavily-electron-doped case. This observation shows that the apparent Fermi surface nesting alone is not enough to enhance the antiferromagnetic correlation as well as the superconducting transition temperature.

14.
Phys Rev Lett ; 105(11): 117003, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20867600

RESUMO

The three-dimensional band structure and superconducting gap of Ba0.6K0.4Fe2As2 are studied with angle-resolved photoemission spectroscopy. In contrast with previous results, we have identified three holelike Fermi surface sheets near the zone center with sizable out-of-plane or kz dispersion. The superconducting gap on certain Fermi surface sheets shows significant kz dependence. Moreover, the superconducting gap sizes are different at the same Fermi momentum for two bands with different spatial symmetries (one odd, one even). Our results further reveal the three-dimensional and orbital-dependent structure of the superconducting gap in iron pnictides, which facilitates the understanding of momentum-integrated measurements and provides a distinct test for theories.

15.
Phys Rev Lett ; 105(7): 076802, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20868066

RESUMO

A hexagonal deformation of the Fermi surface of Bi2Se3 has been for the first time observed by angle-resolved photoemission spectroscopy. This is in contrast to the general belief that Bi2Se3 possesses an ideal Dirac cone. The hexagonal shape is found to disappear near the Dirac node, which would protect the surface state electrons from backscattering. It is also demonstrated that the Fermi energy of naturally electron-doped Bi2Se3 can be tuned by 1% Mg doping in order to realize the quantum topological transport.

16.
Phys Rev Lett ; 105(7): 076804, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20868068

RESUMO

Strong spin polarization of the photocurrent from bulk continuum states of Bi(111) is experimentally observed. On the basis of ab initio one-step photoemission theory the effect is shown to originate from the strong polarization of the initial states at the surface and to be the result of the surface sensitivity of photoemission. Final state effects cause deviations of the k{∥} dependence of polarization from strictly antisymmetric relative to Γ.

17.
Phys Rev Lett ; 105(14): 146801, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21230855

RESUMO

We report the first observation of a topological surface state on the (111) surface of the ternary chalcogenide TlBiSe2 by angle-resolved photoemission spectroscopy. By tuning the synchrotron radiation energy we reveal that it features an almost ideal Dirac cone with the Dirac point well isolated from bulk continuum states. This suggests that TlBiSe2 is a promising material for realizing quantum topological transport.

18.
Phys Rev Lett ; 105(22): 227002, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21231415

RESUMO

We have determined the electron-coupling spectrum of superconducting Bi2Sr2CaCu2O(8+δ) from high-resolution angle-resolved photoemission spectra by two deconvolution-free robust methods. As hole concentration decreases, the coupling spectral weight at low energies ≲15 meV shows a twofold and nearly band-independent enhancement, while that around ∼65 meV increases moderately, and that in ≳130 meV decreases leading to a crossover of dominant coupling excitation between them. Our results suggest the competition among multiple screening effects, and provide important clues to the source of sufficiently strong low-energy coupling, λ(LE)≈1, in an underdoped system.

19.
Phys Rev Lett ; 104(17): 176401, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20482119

RESUMO

We have revealed the underlying mechanism of the martensitic phase transition (MPT) in a new class of ferromagnetic shape memory alloys, Ni2Mn1+xSn1-x, by the combination of bulk-sensitive hard-x-ray photoelectron spectroscopy and a first-principles density-functional calculation. The Ni 3d e{g} state in the cubic phase systematically shifts towards the Fermi energy with an increase in the number of Mn atoms substituted in the Sn sites. An abrupt decrease of the intensity of the Ni 3d e{g} states upon MPT for x=0.36-0.42 has been observed in the vicinity of the Fermi level. The energy shift of the Ni 3d minority-spin e{g} state in the cubic phase originates from hybridization with the antiferromagnetically coupled Mn in the Sn site. Below the MPT temperature, the Ni 3d state splits into two levels located below and above the Fermi energy in order to achieve an energetically stable state.

20.
Phys Rev Lett ; 104(22): 227001, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20867198

RESUMO

We report the first observation of the multilayer band splitting in the optimally doped trilayer cuprate Bi2Sr2Ca2Cu3O(10+δ) (Bi2223) by angle-resolved photoemission spectroscopy. The observed energy bands and Fermi surfaces are originated from the outer and inner CuO2 planes (OP and IP). The OP band is overdoped with a large d-wave gap around the node of Δ0∼43 meV while the IP is underdoped with an even large gap of Δ0∼60 meV. These energy gaps are much larger than those for the same doping level of the double-layer cuprates, which leads to the large Tc in Bi2223. We propose possible origins of the large superconducting gaps for the OP and IP: (1) minimal influence of out-of-plane disorder and a proximity effect and (2) interlayer tunneling of Cooper pairs between the OP and IP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA