Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Neurochem Res ; 49(5): 1347-1358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353896

RESUMO

Previously, we reported that epidermal growth factor (EGF) suppresses GABAergic neuronal development in the rodent cortex. Parvalbumin-positive GABAergic neurons (PV neurons) have a unique extracellular structure, perineuronal nets (PNNs). PNNs are formed during the development of PV neurons and are mainly formed from chondroitin sulfate (CS) proteoglycans (CSPGs). We examined the effect of EGF on CSPG production and PNN formation as a potential molecular mechanism for the inhibition of inhibiting GABAergic neuronal development by EGF. In EGF-overexpressing transgenic (EGF-Tg) mice, the number of PNN-positive PV neurons was decreased in the cortex compared with that in wild-type mice, as in our previous report. The amount of CS and neurocan was also lower in the cortex of EGF-Tg mice, with a similar decrease observed in EGF-treated cultured cortical neurons. PD153035, an EGF receptor (ErbB1) kinase inhibitor, prevented those mentioned above excess EGF-induced reduction in PNN. We explored the molecular mechanism underlying the effect of EGF on PNNs using fluorescent substrates for matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). EGF increased the enzyme activity of MMPs and ADAMs in cultured neurons. These enzyme activities were also increased in the EGF-Tg mice cortex. GM6001, a broad inhibitor of MMPs and ADAMs, also blocked EGF-induced PNN reductions. Therefore, EGF/EGF receptor signals may regulate PNN formation in the developing cortex.


Assuntos
Fator de Crescimento Epidérmico , Neurônios GABAérgicos , Neocórtex , Animais , Camundongos , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , Neurônios GABAérgicos/metabolismo , Metaloproteinases da Matriz/metabolismo , Neocórtex/metabolismo , Parvalbuminas/metabolismo , Roedores/metabolismo
2.
FASEB J ; 36(2): e22160, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35064699

RESUMO

Dopamine in the prefrontal cortex is essential for the regulation of social behavior. However, stress-causing social withdrawal also promotes dopamine release in the prefrontal cortex. Thus, this evidence suggests opposite functions of dopamine in the prefrontal cortex. However, the influence of dopamine on prefrontal functions is yet to be fully understood. Here, we show that dopamine differentially modulated the neuronal activity triggered by social stimuli in the prefrontal cortex, depending on the duration of the dopamine activation (transient or sustained activation). Using chemogenetic techniques, we have found that social behavior was negatively regulated by a sustained increase in dopamine neuronal activity in the ventral tegmental area, while it was positively regulated by an acute increase. The duration of social interactions was positively correlated with the transient dopamine release triggered by social stimuli in the prefrontal cortex and negatively correlated with the sustained increase in prefrontal dopamine levels. Furthermore, the elevation of neural calcium signal, triggered by social stimuli, in the prefrontal cortex was attenuated by the persistent elevation of prefrontal dopamine levels, whereas an acute increase in dopamine levels enhanced it. Additionally, the chronic excess of dopamine suppressed c-Fos induction triggered by social stimuli in prefrontal neurons expressing dopamine D1 receptors, but not D2 receptors. These results suggest that sustained activation of prefrontal dopamine, at the opposite of its transient activation, can reduce prefrontal activity associated with social behavior, even for identical dopamine concentrations. Thus, dopamine plays opposite roles in modulating prefrontal activity depending on the duration of its action.


Assuntos
Dopamina/metabolismo , Córtex Pré-Frontal/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Transgênicos/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Comportamento Social , Área Tegmentar Ventral/metabolismo
3.
Neurochem Res ; 47(9): 2632-2644, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34984589

RESUMO

Neuronal differentiation, maturation, and synapse formation are regulated by various growth factors. Here we show that epidermal growth factor (EGF) negatively regulates presynaptic maturation and synapse formation. In cortical neurons, EGF maintained axon elongation and reduced the sizes of growth cones in culture. Furthermore, EGF decreased the levels of presynaptic molecules and number of presynaptic puncta, suggesting that EGF inhibits neuronal maturation. The reduction of synaptic sites is confirmed by the decreased frequencies of miniature EPSCs. In vivo analysis revealed that while peripherally administrated EGF decreased the levels of presynaptic molecules and numbers of synaptophysin-positive puncta in the prefrontal cortices of neonatal rats, EGF receptor inhibitors upregulated these indexes, suggesting that endogenous EGF receptor ligands suppress presynaptic maturation. Electron microscopy further revealed that EGF decreased the numbers, but not the sizes, of synaptic structures in vivo. These findings suggest that endogenous EGF and/or other EGF receptor ligands negatively modulates presynaptic maturation and synapse formation.


Assuntos
Fator de Crescimento Epidérmico , Sinapses , Animais , Axônios , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Neurogênese/fisiologia , Neurônios/metabolismo , Ratos , Sinapses/metabolismo
4.
J Neurochem ; 142(6): 886-900, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28608461

RESUMO

Phenotypic development of neocortical GABA neurons is highly plastic and promoted by various neurotrophic factors such as neuregulin-1. A subpopulation of GABA neurons expresses not only neuregulin receptor (ErbB4) but also epidermal growth factor (EGF) receptor (ErbB1) during development, but the neurobiological action of EGF on this cell population is less understood than that of neuregulin-1. Here, we examined the effects of exogenous EGF on immature GABA neurons both in culture and in vivo and also explored physiological consequences in adults. We prepared low density cultures from the neocortex of rat embryos and treated neocortical neurons with EGF. EGF decreased protein levels of glutamic acid decarboxylases (GAD65 and GAD67), and EGF influences on neuronal survival and glial proliferation were negligible or limited. The EGF treatment also diminished the frequency of miniature inhibitory postsynaptic currents (mIPSCs). In vivo administration of EGF to mouse pups reproduced the above GABAergic phenomena in neocortical culture. In EGF-injected postnatal mice, GAD- and parvalbumin-immunoreactivities were reduced in the frontal cortex. In addition, postnatal EGF treatment decreased mIPSC frequency in, and the density of, GABAergic terminals on pyramidal cells. Although these phenotypic influences on GABA neurons became less marked during development, it later resulted in the reduced ß- and γ-powers of sound-evoked electroencephalogram in adults, which is regulated by parvalbumin-positive GABA neurons and implicated in the schizophrenia pathophysiology. These findings suggest that, in contrast to the ErbB4 ligand of neuregulin-1, the ErbB1 ligand of EGF exerts unique maturation-attenuating influences on developing cortical GABAergic neurons.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26038269

RESUMO

The output effects of the nonspiking interneurones in the crayfish terminal abdominal ganglion upon the uropod motor neurones were characterized using simultaneous intracellular recordings. Inhibitory interactions from nonspiking interneurones to the uropod motor neurones were one-way and chemically mediated. The depolarization of the motor neurones with current injection increased the amplitude of the nonspiking interneurone-mediated hyperpolarization, while hyperpolarization of the motor neurone decreased it. By contrast, excitatory interactions from the nonspiking interneurones to the motor neurones were not mediated via chemical synaptic transmissions. These excitatory connections with the slow motor neurones were one-way while connections with fast motor neurones were bidirectional. Nonspiking interneurone-mediated membrane depolarization of the motor neurones was not affected by the passage of hyperpolarizing current. Each motor neurone spike elicited a time-locked EPSP in the nonspiking interneurones with very short delay (0.2 ms) that suggested electrical coupling between nonspiking interneurones and motor neurones. Nonspiking interneurones directly control the organization of slow motor neurone activity, while they appear to regulate the background activity of the fast motor neurones. A single nonspiking interneurone is possible to inhibit some inter and/or motor neurones via direct chemical synapses and simultaneously excite other neurones via electrical synapses.


Assuntos
Astacoidea/fisiologia , Gânglios dos Invertebrados/fisiologia , Abdome , Animais , Feminino , Interneurônios/fisiologia , Masculino , Potenciais da Membrana , Neurônios Motores/fisiologia , Sinapses/fisiologia
6.
J Neurochem ; 126(4): 518-28, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23437767

RESUMO

Previous studies on a cytokine model for schizophrenia reveal that the hyperdopaminergic innervation and neurotransmission in the globus pallidus (GP) is involved in its behavioral impairments. Here, we further explored the physiological consequences of the GP abnormality in the indirect pathway, using the same schizophrenia model established by perinatal exposure to epidermal growth factor (EGF). Single-unit recordings revealed that the neural activity from the lateral GP was elevated in EGF-treated rats in vivo and in vitro (i.e., slice preparations), whereas the central area of the GP exhibited no significant differences. The increase in the pallidal activity was normalized by subchronic treatment with risperidone, which is known to ameliorate their behavioral deficits. We also monitored extracellular GABA concentrations in the substantia nigra, one of the targets of pallidal efferents. There was a significant increase in basal GABA levels in EGF-treated rats, whereas high potassium-evoked GABA effluxes and glutamate levels were not affected. A neurotoxic lesion in the GP of EGF-treated rats normalized GABA concentrations to control levels. Corroborating our in vivo results, GABA release from GP slices was elevated in EGF-treated animals. These findings suggest that the hyperactivity and enhanced GABA release of GP neurons represent the key pathophysiological features of this cytokine-exposure model for schizophrenia.


Assuntos
Modelos Animais de Doenças , Fator de Crescimento Epidérmico/farmacologia , Neurônios GABAérgicos/fisiologia , Globo Pálido/fisiopatologia , Ratos Sprague-Dawley , Esquizofrenia/induzido quimicamente , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Antipsicóticos/farmacologia , Eletroencefalografia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Globo Pálido/citologia , Globo Pálido/efeitos dos fármacos , Humanos , Masculino , Técnicas de Cultura de Órgãos , Ratos , Risperidona/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Substância Negra/efeitos dos fármacos , Substância Negra/fisiologia , Ácido gama-Aminobutírico/metabolismo
7.
Biomolecules ; 13(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830741

RESUMO

Epidermal growth factor (EGF) and its homologs, such as neuregulins, bind to ErbB (Her) receptor kinases and regulate glial differentiation and dopaminergic/GABAergic maturation in the brain and are therefore implicated in schizophrenia neuropathology involving these cell abnormalities. In this review, we summarize the biological activities of the EGF family and its neuropathologic association with schizophrenia, mainly overviewing our previous model studies and the related articles. Transgenic mice as well as the rat/monkey models established by perinatal challenges of EGF or its homologs consistently exhibit various behavioral endophenotypes relevant to schizophrenia. In particular, post-pubertal elevation in baseline dopaminergic activity may illustrate the abnormal behaviors relevant to positive and negative symptoms as well as to the timing of this behavioral onset. With the given molecular interaction and transactivation of ErbB receptor kinases with Toll-like receptors (TLRs), EGF/ErbB signals are recruited by viral infection and inflammatory diseases such as COVID-19-mediated pneumonia and poxvirus-mediated fibroma and implicated in the immune-inflammatory hypothesis of schizophrenia. Finally, we also discuss the interaction of clozapine with ErbB receptor kinases as well as new antipsychotic development targeting these receptors.


Assuntos
COVID-19 , Esquizofrenia , Camundongos , Gravidez , Feminino , Ratos , Animais , Fator de Crescimento Epidérmico/metabolismo , Dopamina/metabolismo , Receptores ErbB/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
8.
J Neurosci ; 31(15): 5699-709, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21490211

RESUMO

Neuregulin-1 (NRG1) signaling is thought to contribute to both neuronal development and schizophrenia neuropathology. Here, we describe the developmental effects of excessive peripheral NRG1 signals on synaptic activity and AMPA receptor expression of GABAergic interneurons in postnatal rodent neocortex. A core peptide common to all NRG1 variants (eNRG1) was subcutaneously administered to mouse pups. Injected eNRG1 penetrated the blood-brain barrier and activated ErbB4 NRG1 receptors in the neocortex, in which ErbB4 mRNA is predominantly expressed by parvalbumin-positive GABAergic interneurons. We prepared neocortical slices from juvenile mice that were receiving eNRG1 subchronically and recorded inhibitory synaptic activity from layer V pyramidal neurons. Postnatal eNRG1 treatment significantly enhanced polysynaptic IPSCs, although monosynaptic IPSCs were not affected. Examination of excitatory inputs to parvalbumin-containing GABAergic interneurons revealed that eNRG1 treatment significantly increased AMPA-triggered inward currents and the amplitudes and frequencies of miniature EPSCs (mEPSCs). Similar effects on mEPSCs were observed in mice treated with a soluble, full-length form of NRG1 type I. Consistent with the electrophysiologic data, expression of the AMPA receptor GluA1 (i.e., GluR1, GluRA) was upregulated in the postsynaptic density/cytoskeletal fraction prepared from eNRG1-treated mouse neocortices. Cortical GABAergic neurons cultured with eNRG1 exhibited a significant increase in surface GluA1 immunoreactivity at putative synaptic sites on their dendrites. These results indicate that NRG1 circulating in the periphery influences postnatal development of synaptic AMPA receptor expression in cortical GABAergic interneurons and may play a role in conditions characterized by GABA-associated neuropathologic processes.


Assuntos
Interneurônios/metabolismo , Neocórtex/crescimento & desenvolvimento , Neocórtex/metabolismo , Neuregulina-1/fisiologia , Sistema Nervoso Periférico/fisiologia , Receptores de AMPA/biossíntese , Receptores de AMPA/fisiologia , Transdução de Sinais/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Western Blotting , Células Cultivadas , Fenômenos Eletrofisiológicos , Receptores ErbB/biossíntese , Receptores ErbB/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/embriologia , Gravidez , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor ErbB-4
9.
Neurosci Res ; 175: 62-72, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34699860

RESUMO

Patients with schizophrenia exhibit impaired performance in tone-matching or voice discrimination tests. However, there is no animal model recapitulating these pathophysiological traits. Here, we tested the representation of auditory recognition deficits in an animal model of schizophrenia. We established a rat model for schizophrenia using a perinatal challenge of epidermal growth factor (EGF), exposed adult rats to 55 kHz sine tones, rat calls (50-60 kHz), or reversely played calls, analyzed electrocorticography (ECoG) of the auditory and frontal cortices. Grand averages of event-related responses (ERPs) in the auditory cortex showed between-group size differences in the P1 component, whereas the P2 component differed among sound stimulus types. In EGF model rats, gamma band amplitudes were decreased in the auditory cortex and were enhanced in the frontal cortex with sine stimulus. The model rats also exhibited a reduction in rat call-triggered intercortical phase synchrony in the beta range. Risperidone administration restored normal phase synchrony. These findings suggest that perinatal exposure to the cytokine impairs tone/call recognition processes in these neocortices. In conjunction with previous studies using this model, our findings indicate that perturbations in ErbB/EGF signaling during development exert a multiscale impact on auditory functions at the cellular, circuit, and cognitive levels.


Assuntos
Córtex Auditivo , Citocinas , Modelos Animais de Doenças , Esquizofrenia , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Eletrocorticografia , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Ratos
10.
Sci Rep ; 12(1): 12917, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902695

RESUMO

Rats elicit two types of ultrasonic vocalizations (USVs), positive (30-80 kHz; high pitch) and negative (10-30 kHz; low pitch) voices. As patients with schizophrenia often exhibit soliloquy-like symptoms, we explored whether an animal model for schizophrenia is similarly characterized by such self-triggered vocalizations. We prepared the animal model by administering an inflammatory cytokine, epidermal growth factor (EGF), to rat neonates, which later develop behavioral and electroencephalographic deficits relevant to schizophrenia. EGF model rats and controls at young (8-10 weeks old) and mature (12-14 weeks old) adult stages were subjected to acclimation, female pairing, and vocalization sessions. In acclimation sessions, low pitch USVs at the mature adult stage were more frequent in EGF model rats than in controls. In the vocalization session, the occurrences of low pitch self-triggered USVs were higher in EGF model rats in both age groups, although this group difference was eliminated by their risperidone treatment. Unlike conventional negative USVs of rats, however, the present low pitch self-triggered USVs had short durations of 10-30 ms. These results suggest the potential that self-triggered vocalization might serve as a translatable pathological trait of schizophrenia to animal models.


Assuntos
Esquizofrenia , Animais , Modelos Animais de Doenças , Fator de Crescimento Epidérmico , Feminino , Ratos , Ultrassom , Vocalização Animal
11.
Sci Rep ; 12(1): 15424, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104440

RESUMO

Posture and gait are maintained by sensory inputs from the vestibular, visual, and somatosensory systems and motor outputs. Upon vestibular damage, the visual and/or somatosensory systems functionally substitute by cortical mechanisms called "sensory reweighting". We investigated the cerebrocortical mechanisms underlying sensory reweighting after unilateral labyrinthectomy (UL) in mice. Arc-dVenus transgenic mice, in which the gene encoding the fluorescent protein dVenus is transcribed under the control of the promoter of the immediate early gene Arc, were used in combination with whole-brain three-dimensional (3D) imaging. Performance on the rotarod was measured as a behavioral correlate of sensory reweighting. Following left UL, all mice showed the head roll-tilt until UL10, indicating the vestibular periphery damage. The rotarod performance worsened in the UL mice from UL1 to UL3, which rapidly recovered. Whole-brain 3D imaging revealed that the number of activated neurons in S1, but not in V1, in UL7 was higher than that in sham-treated mice. At UL7, medial prefrontal cortex (mPFC) and agranular insular cortex (AIC) activation was also observed. Therefore, sensory reweighting to the somatosensory system could compensate for vestibular dysfunction following UL; further, mPFC and AIC contribute to the integration of sensory and motor functions to restore balance.


Assuntos
Vestíbulo do Labirinto , Animais , Córtex Cerebral , Camundongos , Neurônios/fisiologia , Postura , Vestíbulo do Labirinto/fisiologia
12.
Neuropsychopharmacol Rep ; 41(3): 405-415, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34296531

RESUMO

AIM: A reduced mismatch negativity (MMN) response is a promising electrophysiological endophenotype of schizophrenia that reflects neurocognitive impairment. Dopamine dysfunction is associated with symptoms of schizophrenia. However, whether the dopamine system is involved in MMN impairment remains controversial. In this study, we investigated the effects of the dopamine D2-like receptor agonist quinpirole on mismatch responses to sound frequency changes in an animal model. METHODS: Event-related potentials were recorded from electrocorticogram electrodes placed on the auditory and frontal cortices of freely moving rats using a frequency oddball paradigm consisting of ascending and equiprobable (ie, many standards) control sequences before and after the subcutaneous administration of quinpirole. To detect mismatch responses, difference waveforms were obtained by subtracting nondeviant control waveforms from deviant waveforms. RESULTS: Here, we show the significant effects of quinpirole on frontal mismatch responses to sound frequency deviations in rats. Quinpirole delayed the frontal N18 and P30 mismatch responses and reduced the frontal N55 MMN-like response, which resulted from the reduction in the N55 amplitude to deviant stimuli. Importantly, the magnitude of the N55 amplitude was negatively correlated with the time of the P30 latency in the difference waveforms. In contrast, quinpirole administration did not clearly affect the temporal mismatch responses recorded from the auditory cortex. CONCLUSION: These results suggest that the disruption of dopamine D2-like receptor signaling by quinpirole reduces frontal MMN to sound frequency deviations and that delays in early mismatch responses are involved in this MMN impairment.


Assuntos
Dopamina , Potenciais Evocados Auditivos , Estimulação Acústica , Animais , Agonistas de Dopamina/toxicidade , Eletroencefalografia , Quimpirol/toxicidade , Ratos
13.
Transl Psychiatry ; 11(1): 236, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888687

RESUMO

Hyperdopaminergic activities are often linked to positive symptoms of schizophrenia, but their neuropathological implications on negative symptoms are rather controversial among reports. Here, we explored the regulatory role of the resting state-neural activity of dopaminergic neurons in the ventral tegmental area (VTA) on social interaction using a developmental rat model for schizophrenia. We prepared the model by administering an ammonitic cytokine, epidermal growth factor (EGF), to rat pups, which later exhibit the deficits of social interaction as monitored with same-gender affiliative sniffing. In vivo single-unit recording and microdialysis revealed that the baseline firing frequency of and dopamine release from VTA dopaminergic neurons were chronically increased in EGF model rats, and their social interaction was concomitantly reduced. Subchronic treatment with risperidone ameliorated both the social interaction deficits and higher frequency of dopaminergic cell firing in this model. Sustained suppression of hyperdopaminergic cell firing in EGF model rats by DREADD chemogenetic intervention restored the event-triggered dopamine release and their social behaviors. These observations suggest that the higher resting-state activity of VTA dopaminergic neurons is responsible for the reduced social interaction of this schizophrenia model.


Assuntos
Esquizofrenia , Área Tegmentar Ventral , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Ratos , Interação Social
14.
Neuropsychopharmacol Rep ; 41(3): 416-421, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34043885

RESUMO

Genetic and environmental factors interact with each other to influence the risk of various psychiatric diseases; however, the intensity and nature of their interactions remain to be elucidated. We established a maternal infection model using polyinosinic-polycytidylic acid (Poly(I:C)) to determine the relationship between the maternal breeding environment and behavioral changes in the offspring. We purchased pregnant C57BL/6J mice from three breeders and administered Poly(I:C) (2 mg/kg) intravenously in their tail vein on gestation day 15. The offspring were raised to 8-12 weeks old and subjected to the acoustic startle tests to compare their startle response intensity, prepulse inhibition levels, and degree of the adaptation of the startle response. No statistical interaction between Poly(I:C) administration and sex was observed for prepulse inhibition; thus, male and female mice were analyzed together. There was a statistical interaction between the breeder origin of offspring and prepulse inhibition; the Poly(I:C) challenge significantly decreased prepulse inhibition levels of the offspring born to the pregnant dams from Breeder A but not those from the other breeders. However, we failed to detect significant inter-breeder differences in Poly(I:C) effects on startle response and on startle adaptation with the given number of mice examined. The rearing environment of mouse dams has a prominent effect on the Poly(I:C)-induced prepulse inhibition deficits in this maternal immune activation model.


Assuntos
Inibição Pré-Pulso , Reflexo de Sobressalto , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/toxicidade , Gravidez
15.
J Biol Chem ; 284(39): 26340-8, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19625250

RESUMO

The constitutive and activity-dependent components of protein synthesis are both critical for neural function. Although the mechanisms controlling extracellularly induced protein synthesis are becoming clear, less is understood about the molecular networks that regulate the basal translation rate. Here we describe the effects of chronic treatment with various neurotrophic factors and cytokines on the basal rate of protein synthesis in primary cortical neurons. Among the examined factors, brain-derived neurotrophic factor (BDNF) showed the strongest effect. The rate of protein synthesis increased in the cortical tissues of BDNF transgenic mice, whereas it decreased in BDNF knock-out mice. BDNF specifically increased the level of the active, unphosphorylated form of eukaryotic elongation factor 2 (eEF2). The levels of active eEF2 increased and decreased in BDNF transgenic and BDNF knock-out mice, respectively. BDNF decreased kinase activity and increased phosphatase activity against eEF2 in vitro. Additionally, BDNF shortened the ribosomal transit time, an index of translation elongation. In agreement with these results, overexpression of eEF2 enhanced protein synthesis. Taken together, our results demonstrate that the increased level of active eEF2 induced by chronic BDNF stimulation enhances translational elongation processes and increases the total rate of protein synthesis in neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Neurônios/efeitos dos fármacos , Fator 2 de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Citocinas/farmacologia , Quinase do Fator 2 de Elongação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neurônios/citologia , Neurônios/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Fosforilação/efeitos dos fármacos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribossomos/metabolismo , Fatores de Tempo
16.
Neuroscience ; 441: 22-32, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531471

RESUMO

Schizophrenia in humans typically develops during and after adolescence; however, the biological underpinning for the specificity of this onset time window remains to be determined. In the present study, we investigated this knowledge gap using our own animal model for schizophrenia. Rodents and monkeys challenged with a cytokine, epidermal growth factor (EGF), as neonates are known to exhibit various behavioral and cognitive abnormalities at the post-pubertal stage. We used the EGF-challenged mice as an animal model for schizophrenia to evaluate the electrophysiological impact of this modeling on nigral dopamine neurons before and after puberty. In vivo single unit recording revealed that the burst firing of putative dopamine neurons in substantia nigra pars compacta was significantly higher in the post-pubertal stage of the EGF model than in that of control mice; in contrast, this difference was not observed in the pre-pubertal stage. The increase in burst firing was accompanied by a decline in Ca2+-activated K+ (ISK) currents, which influence the firing pattern of dopamine neurons. In vivo local application of the SK channel blocker apamin (80 µM) to the substantia nigra was less effective at increasing burst firing in the EGF model than in control mice, suggesting the pathologic role of the ISK decrease in this model. Thus, these results suggest that the aberrant post-pubertal hyperactivity of midbrain dopaminergic neurons is associated with the temporal specificity of the behavioral deficit of this model, and support the hypothesis that this dopaminergic aberration could be implicated in the adolescent onset of schizophrenia.


Assuntos
Neurônios Dopaminérgicos , Esquizofrenia , Potenciais de Ação , Animais , Citocinas , Fator de Crescimento Epidérmico , Camundongos , Substância Negra
17.
Neuropsychopharmacol Rep ; 40(1): 96-101, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31788981

RESUMO

AIMS: The brain function that detects deviations in the acoustic environment can be evaluated with mismatch negativity (MMN). MMN to sound duration deviance has recently drawn attention as a biomarker for schizophrenia. Nonhuman animals, including rats, also exhibit MMN-like potentials. Therefore, MMN research in nonhuman animals can help to clarify the neural mechanisms underlying MMN production. However, results from preclinical MMN studies on duration deviance have been conflicting. We investigated the effect of sound frequency on MMN-like potentials to duration deviance in rats. METHODS: Event-related potentials were recorded from an electrode placed on the primary auditory cortex of free-moving rats using an oddball paradigm consisting of 50-ms duration tones (standards) and 150-ms duration tones (deviants) at a 500-ms stimulus onset asynchrony. The sound frequency was set to three conditions: 3, 12, and 50 kHz. RESULTS: MMN-like potentials that depended on the short-term stimulus history of background regularity were only observed in the 12-kHz tone frequency condition. CONCLUSIONS: MMN-like potentials to duration deviance are subject to tone frequency of the oddball paradigm in rats, suggesting that rats have distinct sound duration recognition ability.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Animais , Atenção/fisiologia , Comportamento Animal/fisiologia , Eletrocorticografia , Masculino , Ratos , Ratos Sprague-Dawley , Vigília/fisiologia
18.
Eur J Neurosci ; 30(12): 2338-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20092576

RESUMO

Dopamine (DA) is a neuromodulator that is critical for sensory-motor, cognitive and emotional functions. We previously found that mice lacking prostaglandin E receptor EP1 showed impulsive emotional behaviors accompanied by enhanced DA turnover in the frontal cortex and striatum. Given that these behavioral phenotypes were corrected by DA receptor antagonists, we hypothesized that EP1 deficiency causes a hyperdopaminergic state for its behavioral phenotype. Here we tested this hypothesis by examining the EP1 action in the nigrostriatal dopaminergic system. We first used microdialysis and found an elevated extracellular DA level in the dorsal striatum of EP1-deficient mice compared with wild-type mice. Despite the EP1 expression in the striatum, neither deficiency nor activation of EP1 altered the intrastriatal control for DA release, uptake or degradation. Immunohistochemistry revealed punctate EP1 signals apposed with dopaminergic neurons in the substantia nigra pars compacta (SNc). Many EP1 signals were colocalized with a marker for GABAergic synapses. Further, an EP1 agonist enhanced GABA(A)-mediated inhibitory inputs to SNc dopaminergic neurons in midbrain slices. Therefore, the prostaglandin E(2)-EP1 signaling directly enhances GABAergic inputs to SNc dopaminergic neurons. The lack of this EP1 action may lead to a hyperdopaminergic state of EP1-deficient mice.


Assuntos
Encéfalo/fisiologia , Dopamina/metabolismo , Inibição Neural/fisiologia , Neurônios/fisiologia , Receptores de Prostaglandina E/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Corpo Estriado/fisiologia , Espaço Extracelular/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Receptores de GABA-A/metabolismo , Receptores de Prostaglandina E/agonistas , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E Subtipo EP1 , Substância Negra/fisiologia , Sinapses/fisiologia
19.
Neurosci Res ; 63(2): 138-48, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19071166

RESUMO

Ligands for the epidermal growth factor receptor ErbB1, such as epidermal growth factor (EGF) and transforming growth factor alpha (TGFalpha), negatively regulate synaptic maturation of GABAergic neurons in the developing neocortex. Here, we evaluated the effects of these ligands in vivo on developing inhibitory neurons in the dentate gyrus. Hippocampal slices were prepared from postnatal mice repeatedly challenged with EGF or from transgenic mice overexpressing TGFalpha. We monitored paired pulse depression of field population spikes evoked by perforant path stimulation to estimate the strength of local inhibition. Administration of EGF increased the paired pulse ratio, suggesting a reduction of inhibitory strength. A similar reduction was observed in TGFalpha transgenic mice. Monitoring miniature and evoked synaptic currents, we estimated EGF effects on synaptic input and output of GABAergic neurons. EGF treatment diminished the amplitude of excitatory postsynaptic currents (EPSCs) in the GABAergic neurons without affecting their miniature EPSCs. EGF also affected output strength of the GABAergic neurons: The frequency of miniature inhibitory postsynaptic currents (IPSCs) and the evoked IPSC/evoked EPSC ratio were decreased in granule cells. In parallel, EGF down-regulated the protein level of vesicular GABA transporter. Thus, ErbB1 ligands influence GABAergic inhibitory synaptic transmission in the developing dentate gyrus.


Assuntos
Giro Denteado/efeitos dos fármacos , Receptores ErbB/metabolismo , Inibição Neural/fisiologia , Sinapses/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Biofísica , Giro Denteado/citologia , Estimulação Elétrica/métodos , Fator de Crescimento Epidérmico/farmacologia , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/metabolismo , Humanos , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Sinapses/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/fisiologia , Fator de Crescimento Transformador alfa/genética
20.
Sci Rep ; 9(1): 7503, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097747

RESUMO

Perinatal exposure to epidermal growth factor (EGF) induces various cognitive and behavioral abnormalities after maturation in non-human animals, and is used for animal models of schizophrenia. Patients with schizophrenia often display a reduction of mismatch negativity (MMN), which is a stimulus-change specific event-related brain potential. Do the EGF model animals also exhibit the MMN reduction as schizophrenic patients do? This study addressed this question to verify the pathophysiological validity of this model. Neonatal rats received repeated administration of EGF or saline and were grown until adulthood. Employing the odd-ball paradigm of distinct tone pitches, tone-evoked electroencephalogram (EEG) components were recorded from electrodes on the auditory and frontal cortices of awake rats, referencing an electrode on the frontal sinus. The amplitude of the MMN-like potential was significantly reduced in EGF-treated rats compared with saline-injected control rats. The wavelet analysis of the EEG during a near period of tone stimulation revealed that synchronization of EEG activity, especially with beta and gamma bands, was reduced in EGF-treated rats. Results suggest that animals exposed to EGF during a perinatal period serve as a promising neurodevelopmental model of schizophrenia.


Assuntos
Córtex Auditivo/efeitos dos fármacos , Fator de Crescimento Epidérmico/toxicidade , Potenciais Evocados , Lobo Frontal/efeitos dos fármacos , Esquizofrenia/fisiopatologia , Animais , Córtex Auditivo/fisiopatologia , Ritmo beta , Lobo Frontal/fisiopatologia , Ritmo Gama , Masculino , Ratos , Ratos Sprague-Dawley , Esquizofrenia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA