Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 13(8): e0201791, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30086164

RESUMO

Eelgrass (Zostera marina) forms extensive beds in coastal and estuarine environments and provides various ecosystem functions. The aboveground part of eelgrass provides habitats for other types of primary producers such as epiphytic microalgae and for epifaunal invertebrate grazers. Because of the different sizes, generation times and resource requirements, these different types of producers and consumers may be affected by different sets of biotic/abiotic factors over multiple spatial scales. We examined the spatial variations in three functional groups of eelgrass beds (eelgrass, epiphytic microalgae and epifaunal invertebrates) and the abiotic/biotic factors responsible for these variations in three lagoons with different environmental properties at the eastern region of Hokkaido Island, Japan. The spatial scale responsible for the variation in the biomasses of the three functional groups varied, where within-lagoon variation was important for eelgrass and epifauna but among-lagoon variation was important for microalgae. The environmental predictors for the observed spatial variations also differed among the different functional groups, with variation in eelgrass biomass related to depth, nutrient and salinity, epiphytes to water temperature, eelgrass biomass and water column chlorophyll and epifauna mainly to eelgrass biomass. These results revealed that the level of importance of among- and within-lagoon environmental gradients vary in the different functional groups of the eelgrass bed community. The large-scale variation in pelagic productivity, which is tightly related to the ocean current regimes, is likely responsible for the great among-lagoon variation in microalgae. The local variations in environmental factors such as salinity and nutrients, which change with alterations in terrestrial river inputs, are likely related to the great variations in eelgrass and epifauna within the ecosystem. The observed relationship of epifauna with eelgrass biomass indicates the importance of non-trophic plant-animal interactions because epifauna utilize eelgrass as habitat. We therefore emphasize the importance of evaluating spatial variations at multiple scales to further understand the functions of coastal and estuarine ecosystems.


Assuntos
Distribuição Animal , Herbivoria , Invertebrados , Microalgas , Zosteraceae , Animais , Biomassa , Clorofila , Ecossistema , Japão , Microalgas/crescimento & desenvolvimento , Oceanos e Mares , Salinidade , Estações do Ano , Análise Espacial , Temperatura , Zosteraceae/crescimento & desenvolvimento
2.
PLoS One ; 13(5): e0197753, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29795609

RESUMO

Coastal fisheries are in decline worldwide, and aquaculture has become an increasingly popular way to meet seafood demand. While finfish aquaculture can have substantial adverse effects on coastal ecosystems due mostly to necessary feed inputs, bivalves graze on natural phytoplankton and are often considered for their positive ecosystem services. We conducted two independent studies to investigate the effects of long-line Crassostrea gigas oyster aquaculture on Zostera marina seagrass beds and associated epibiont communities in Akkeshi-ko estuary, Japan. Results from both studies yielded no evidence of an effect of oyster aquaculture on the morphology, density, or biomass of Z. marina, but significant differences were apparent in the epibiont community. Reference seagrass beds located away from aquaculture had higher seagrass epiphyte loads and higher abundances of amphipods. Conversely, seagrass beds below aquaculture lines had higher sessile polychaete biomass and higher isopod abundances. Our results suggest that the presence of oyster aquaculture may have indirect effects on seagrass by changing epibiont community composition and relative abundances of species. One proposed mechanism is that cultured oysters feed on epiphytic diatoms and epiphyte propagules before they can settle on the seagrass, which reduces epiphyte loads and influences subsequent faunal settlement. If carefully implemented and monitored, long-line oyster aquaculture may be a sustainable option to consider as bivalve aquaculture expands to meet global seafood demand, but further work is needed to fully assess and generalize the community-level effects on seagrass epibionts.


Assuntos
Ecossistema , Ostreidae/crescimento & desenvolvimento , Zosteraceae/crescimento & desenvolvimento , Animais , Aquicultura , Biomassa , Estuários , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA