Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Prostate ; 80(13): 1058-1070, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32692871

RESUMO

BACKGROUND: Most prostate cancers express androgen receptor (AR), and our previous studies have focused on identifying transcription factors that modify AR function. We have shown that nuclear factor I/B (NFIB) regulates AR activity in androgen-dependent prostate cancer cells in vitro. However, the status of NFIB in prostate cancer was unknown. METHODS: We immunostained a tissue microarray including normal, hyperplastic, prostatic intraepithelial neoplasia, primary prostatic adenocarcinoma, and castration-resistant prostate cancer tissue samples for NFIB, AR, and synaptophysin, a marker of neuroendocrine differentiation. We interrogated publically available data sets in cBioPortal to correlate NFIB expression and AR and neuroendocrine prostate cancer (NEPCa) activity scores. We analyzed prostate cancer cell lines for NFIB expression via Western blot analysis and used nuclear and cytoplasmic fractionation to assess where NFIB is localized. We performed co-immunoprecipitation studies to determine if NFIB and AR interact. RESULTS: NFIB increased in the nucleus and cytoplasm of prostate cancer samples versus matched normal controls, independent of Gleason score. Similarly, cytoplasmic AR and synaptophysin increased in primary prostate cancer. We observed strong NFIB staining in primary small cell prostate cancer. The ratio of cytoplasmic-to-nuclear NFIB staining was predictive of earlier biochemical recurrence in prostate cancer, once adjusted for tumor margin status. Cytoplasmic AR was an independent predictor of biochemical recurrence. There was no statistically significant difference between NFIB and synaptophysin expression in primary and castration-resistant prostate cancer, but cytoplasmic AR expression was increased in castration-resistant samples. In primary prostate cancer, nuclear NFIB expression correlated with cytoplasmic NFIB and nuclear AR, while cytoplasmic NFIB correlated with synaptophysin, and nuclear and cytoplasmic AR. In castration-resistant prostate cancer samples, NFIB expression correlated positively with an AR activity score, and negatively with the NEPCa score. In prostate cancer cell lines, NFIB exists in several isoforms. We observed NFIB predominantly in the nuclear fraction of prostate cancer cells with increased cytoplasmic expression seen in castration-resistant cell lines. We observed an interaction between AR and NFIB through co-immunoprecipitation experiments. CONCLUSION: We have described the expression pattern of NFIB in primary and castration-resistant prostate cancer and its positive correlation with AR. We have also demonstrated AR interacts with NFIB.


Assuntos
Fatores de Transcrição NFI/biossíntese , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/biossíntese , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Fatores de Transcrição NFI/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Análise Serial de Tecidos , Transcriptoma
2.
Genes Dev ; 24(1): 97-110, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20048003

RESUMO

eIF1A is the eukaryotic ortholog of bacterial translation initiation factor IF1, but contains a helical domain and long unstructured N-terminal tail (NTT) and C-terminal tail (CTT) absent in IF1. Here, we identify elements in these accessory regions of eIF1A with dual functions in binding methionyl initiator tRNA (Met-tRNA(i)(Met)) to the ribosome and in selecting AUG codons. A pair of repeats in the eIF1A CTT, dubbed Scanning Enhancer 1 (SE1) and SE2, was found to stimulate recruitment of Met-tRNA(i)(Met) in the ternary complex (TC) with eIF2.GTP and also to block initiation at UUG codons. In contrast, the NTT and segments of the helical domain are required for the elevated UUG initiation occurring in SE mutants, and both regions also impede TC recruitment. Remarkably, mutations in these latter elements, dubbed scanning inhibitors SI1 and SI2, reverse the defects in TC loading and UUG initiation conferred by SE substitutions, showing that the dual functions of SE elements in TC binding and UUG suppression are mechanistically linked. It appears that SE elements enhance TC binding in a conformation conducive to scanning but incompatible with initiation, whereas SI elements destabilize this conformation to enable full accommodation of Met-tRNA(i)(Met) in the P site for AUG selection.


Assuntos
Códon de Iniciação/metabolismo , Fator de Iniciação 1 em Eucariotos/metabolismo , RNA de Transferência de Metionina/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Elementos Facilitadores Genéticos/genética , Fator de Iniciação 1 em Eucariotos/química , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Ribossômicas Menores de Eucariotos/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
3.
RNA Biol ; 14(2): 188-196, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27981882

RESUMO

In vitro studies of translation provide critical mechanistic details, yet purification of large amounts of highly active eukaryotic ribosomes remains a challenge for biochemists and structural biologists. Here, we present an optimized method for preparation of highly active yeast ribosomes that could easily be adapted for purification of ribosomes from other species. The use of a nitrogen mill for cell lysis coupled with chromatographic purification of the ribosomes results in 10-fold-increased yield and less variability compared with the traditional approach, which relies on sedimentation through sucrose cushions. We demonstrate that these ribosomes are equivalent to those made using the traditional method in a host of in vitro assays, and that utilization of this new method will consistently produce high yields of active yeast ribosomes.


Assuntos
Resinas de Troca Aniônica , Cromatografia por Troca Iônica , Ribossomos , Leveduras/metabolismo , Resinas de Troca Aniônica/química , Técnicas In Vitro , Cloreto de Potássio/química , Biossíntese de Proteínas , Ribossomos/metabolismo
4.
RNA ; 20(2): 150-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24335188

RESUMO

In the current model of translation initiation by the scanning mechanism, eIF1 promotes an open conformation of the 40S subunit competent for rapidly loading the eIF2·GTP·Met-tRNAi ternary complex (TC) in a metastable conformation (POUT) capable of sampling triplets entering the P site while blocking accommodation of Met-tRNAi in the PIN state and preventing completion of GTP hydrolysis (Pi release) by the TC. All of these functions should be reversed by eIF1 dissociation from the preinitiation complex (PIC) on AUG recognition. We tested this model by selecting eIF1 Ssu(-) mutations that suppress the elevated UUG initiation and reduced rate of TC loading in vivo conferred by an eIF1 (Sui(-)) substitution that eliminates a direct contact of eIF1 with the 40S subunit. Importantly, several Ssu(-) substitutions increase eIF1 affinity for 40S subunits in vitro, and the strongest-binding variant (D61G), predicted to eliminate ionic repulsion with 18S rRNA, both reduces the rate of eIF1 dissociation and destabilizes the PIN state of TC binding in reconstituted PICs harboring Sui(-) variants of eIF5 or eIF2. These findings establish that eIF1 dissociation from the 40S subunit is required for the PIN mode of TC binding and AUG recognition and that increasing eIF1 affinity for the 40S subunit increases initiation accuracy in vivo. Our results further demonstrate that the GTPase-activating protein eIF5 and ß-subunit of eIF2 promote accuracy by controlling eIF1 dissociation and the stability of TC binding to the PIC, beyond their roles in regulating GTP hydrolysis by eIF2.


Assuntos
Fator de Iniciação 1 em Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Iniciação da Transcrição Genética , Sequência de Aminoácidos , Códon de Iniciação , Fator de Iniciação 1 em Eucariotos/química , Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 5 em Eucariotos/química , Fator de Iniciação 5 em Eucariotos/metabolismo , Técnicas de Inativação de Genes , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólise , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Estabilidade Proteica , Subunidades Ribossômicas Menores de Eucariotos/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
Nucleic Acids Res ; 42(15): 9623-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25114053

RESUMO

eIF5 is the GTPase activating protein (GAP) for the eIF2 · GTP · Met-tRNAi (Met) ternary complex with a critical role in initiation codon selection. Previous work suggested that the eIF5 mutation G31R/SUI5 elevates initiation at UUG codons by increasing GAP function. Subsequent work implicated eIF5 in rearrangement of the preinitiation complex (PIC) from an open, scanning conformation to a closed state at AUG codons, from which Pi is released from eIF2 · GDP · Pi. To identify eIF5 functions crucial for accurate initiation, we investigated the consequences of G31R on GTP hydrolysis and Pi release, and the effects of intragenic G31R suppressors on these reactions, and on the partitioning of PICs between open and closed states. eIF5-G31R altered regulation of Pi release, accelerating it at UUG while decreasing it at AUG codons, consistent with its ability to stabilize the closed complex at UUG. Suppressor G62S mitigates both defects of G31R, accounting for its efficient suppression of UUG initiation in G31R,G62S cells; however suppressor M18V impairs GTP hydrolysis with little effect on PIC conformation. The strong defect in GTP hydrolysis conferred by M18V likely explains its broad suppression of Sui(-) mutations in numerous factors. We conclude that both of eIF5's functions, regulating Pi release and stabilizing the closed PIC conformation, contribute to stringent AUG selection in vivo.


Assuntos
Códon de Iniciação , Fator de Iniciação 5 em Eucariotos/metabolismo , Guanosina Trifosfato/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 5 em Eucariotos/química , Fator de Iniciação 5 em Eucariotos/genética , Mutação , Fosfatos/metabolismo , Supressão Genética
6.
J Biol Chem ; 288(8): 5316-29, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23293029

RESUMO

Accurate recognition of the start codon in an mRNA by the eukaryotic translation preinitiation complex (PIC) is essential for proper gene expression. The process is mediated by eukaryotic translation initiation factors (eIFs) in conjunction with the 40 S ribosomal subunit and (initiator) tRNA(i). Here, we provide evidence that the C-terminal tail (CTT) of eIF1A, which we previously implicated in start codon recognition, moves closer to the N-terminal domain of eIF5 when the PIC encounters an AUG codon. Importantly, this movement is coupled to dissociation of eIF1 from the PIC, a critical event in start codon recognition, and is dependent on the scanning enhancer elements in the eIF1A CTT. The data further indicate that eIF1 dissociation must be accompanied by the movement of the eIF1A CTT toward eIF5 in order to trigger release of phosphate from eIF2, which converts the latter to its GDP-bound state. Our results also suggest that release of eIF1 from the PIC and movement of the CTT of eIF1A are triggered by the same event, most likely accommodation of tRNA(i) in the P site of the 40 S subunit driven by base pairing between the start codon in the mRNA and the anticodon in tRNA(i). Finally, we show that the C-terminal domain of eIF5 is responsible for the factor's activity in antagonizing eIF1 binding to the PIC. Together, our data provide a more complete picture of the chain of molecular events that is triggered when the scanning PIC encounters an AUG start codon in the mRNA.


Assuntos
Códon de Iniciação , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 5 em Eucariotos/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Cisteína/genética , Fluoresceína/farmacologia , Transferência Ressonante de Energia de Fluorescência/métodos , Regulação da Expressão Gênica , Humanos , Cinética , Mutação , Ácidos Nucleicos/química , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Proteínas/química , RNA Mensageiro/metabolismo
7.
Cancer Res Commun ; 4(9): 2295-2307, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39113611

RESUMO

Phenotypic plasticity is a recognized mechanism driving therapeutic resistance in patients with prostate cancer. Although underlying molecular causations driving phenotypic plasticity have been identified, therapeutic success is yet to be achieved. To identify putative master regulator transcription factors (MR-TF) driving phenotypic plasticity in prostate cancer, this work utilized a multiomic approach using genetically engineered mouse models of prostate cancer combined with patient data to identify MYB proto-oncogene like 2 (MYBL2) as a significantly enriched transcription factor in prostate cancer exhibiting phenotypic plasticity. Genetic inhibition of Mybl2 using independent murine prostate cancer cell lines representing phenotypic plasticity demonstrated Mybl2 loss significantly decreased in vivo growth as well as cell fitness and repressed gene expression signatures involved in pluripotency and stemness. Because MYBL2 is currently not druggable, a MYBL2 gene signature was employed to identify cyclin-dependent kinase-2 (CDK2) as a potential therapeutic target. CDK2 inhibition phenocopied genetic loss of Mybl2 and significantly decreased in vivo tumor growth associated with enrichment of DNA damage. Together, this work demonstrates MYBL2 as an important MR-TF driving phenotypic plasticity in prostate cancer. Furthermore, high MYBL2 activity identifies prostate cancer that would be responsive to CDK2 inhibition. SIGNIFICANCE: Prostate cancers that escape therapy targeting the androgen receptor signaling pathways via phenotypic plasticity are currently untreatable. Our study identifies MYBL2 as a MR-TF in phenotypic plastic prostate cancer and implicates CDK2 inhibition as a novel therapeutic target for this most lethal subtype of prostate cancer.


Assuntos
Quinase 2 Dependente de Ciclina , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Plasticidade Celular , Proliferação de Células , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Proto-Oncogene Mas , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Transativadores/genética , Transativadores/metabolismo , Ubiquitina-Proteína Ligases
8.
Biochim Biophys Acta ; 1824(2): 326-33, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22056293

RESUMO

Streptokinase (SK) is a protein co-factor with a potent capability for human plasminogen (HPG) activation. Our previous studies [1] have indicated a major role of long-range protein-protein contacts between the three domains (alpha, beta, and gamma) of SK and the multi-domain HPG substrate (K1-K5CD). To further explore this phenomenon, we prepared truncated derivatives of HPG with progressive removal of kringle domains, like K5CD, K4K5CD, K3-K5CD (K3K4K5CD), K2-K5CD (K2K3K4K5CD) and K1-K5CD (K1K2K3K4K5CD). While urokinase (uPA) cleaved the scissile peptide in the isolated catalytic domain (µPG) with nearly the same rate as with full-length HPG, SK-plasmin showed only 1-2% activity, revealing mutually distinct mechanisms of HPG catalysis between the eukaryotic and prokaryotic activators. Remarkably, with SK.HPN (plasmin), the 'addition' of both kringles 4 and 5 onto the catalytic domain showed catalytic rates comparable to full length HPG, thus identifying the dependency of the "long-range" enzyme-substrate interactions onto these two CD-proximal domains. Further, chimeric variants of K5CD were generated by swapping the kringle domains of HPG with those of uPA and TPA (tissue plasminogen activator), separately. Surprisingly, although native-like catalytic turnover rates were retained when either K1, K2 or K4 of HPG was substituted at the K5 position in K5CD, these were invariably lost once substituted with the evolutionarily more distant TPA- and uPA-derived kringles. The present results unveil a novel mechanism of SK.HPN action in which augmented catalysis occurs through enzyme-substrate interactions centered on regions in substrate HPG (kringles 4 and 5) that are spatially distant from the scissile peptide bond.


Assuntos
Kringles , Ativadores de Plasminogênio/química , Plasminogênio/química , Estreptoquinase/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Biocatálise , Domínio Catalítico , Ativação Enzimática , Fibrinolisina/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutagênese Sítio-Dirigida , Pichia , Plasminogênio/genética , Ativadores de Plasminogênio/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Estreptoquinase/genética , Especificidade por Substrato
10.
Mol Cancer Ther ; 20(2): 398-409, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33298586

RESUMO

Castration-resistant prostate cancer can be treated with the antiandrogen enzalutamide, but responses and duration of response are variable. To identify genes that support enzalutamide resistance, we performed a short hairpin RNA (shRNA) screen in the bone-homing, castration-resistant prostate cancer cell line, C4-2B. We identified 11 genes (TFAP2C, CAD, SPDEF, EIF6, GABRG2, CDC37, PSMD12, COL5A2, AR, MAP3K11, and ACAT1) whose loss resulted in decreased cell survival in response to enzalutamide. To validate our screen, we performed transient knockdowns in C4-2B and 22Rv1 cells and evaluated cell survival in response to enzalutamide. Through these studies, we validated three genes (ACAT1, MAP3K11, and PSMD12) as supporters of enzalutamide resistance in vitro Although ACAT1 expression is lower in metastatic castration-resistant prostate cancer samples versus primary prostate cancer samples, knockdown of ACAT1 was sufficient to reduce cell survival in C4-2B and 22Rv1 cells. MAP3K11 expression increases with Gleason grade, and the highest expression is observed in metastatic castration-resistant disease. Knockdown of MAP3K11 reduced cell survival, and pharmacologic inhibition of MAP3K11 with CEP-1347 in combination with enzalutamide resulted in a dramatic increase in cell death. This was associated with decreased phosphorylation of AR-Serine650, which is required for maximal AR activation. Finally, although PSMD12 expression did not change during disease progression, knockdown of PSMD12 resulted in decreased AR and AR splice variant expression, likely contributing to the C4-2B and 22Rv1 decrease in cell survival. Our study has therefore identified at least three new supporters of enzalutamide resistance in castration-resistant prostate cancer cells in vitro.


Assuntos
Benzamidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Benzamidas/farmacologia , Humanos , Masculino , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Transfecção
11.
Methods Enzymol ; 430: 111-45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913637

RESUMO

To facilitate the mechanistic dissection of eukaryotic translation initiation we have reconstituted the steps of this process using purified Saccharomyces cerevisiae components. This system provides a bridge between biochemical studies in vitro and powerful yeast genetic techniques, and complements existing reconstituted mammalian translation systems (Benne and Hershey, 1978; Pestova and Hellen, 2000; Pestova et al., 1998; Trachsel et al., 1977). The following describes methods for synthesizing and purifying the components of the yeast initiation system and assays useful for its characterization.


Assuntos
Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 1 em Eucariotos/isolamento & purificação , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/isolamento & purificação , Fator de Iniciação 2 em Eucariotos/metabolismo , Metionina/metabolismo , Metionina tRNA Ligase/isolamento & purificação , Metionina tRNA Ligase/metabolismo , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , RNA Fúngico/metabolismo , RNA Ribossômico/isolamento & purificação , RNA Ribossômico/metabolismo , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Methods Enzymol ; 536: 79-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24423268

RESUMO

Maleimide derivitization of a protein is an essential tool for putting probes such as fluorescent labels at different sites within a polypeptide chain. This allows one to better understand protein-protein or protein-nucleic acid interactions using various biophysical approaches such as fluorescence anisotropy and fluorescence resonance energy transfer (FRET).


Assuntos
Fluoresceínas/química , Corantes Fluorescentes/química , Proteínas/química , Soluções Tampão , Soluções , Coloração e Rotulagem
13.
Methods Enzymol ; 536: 87-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24423269

RESUMO

N-hydroxysuccinimde (NHS) ester-mediated derivitization involves the reaction of this amine-reactive group with the primary amines of a protein or a biomolecule. Using NHS chemistry allows one to conjugate various fluorescent probes, biotin, and cross-linkers to primary amines. For example, we use NHS ester chemistry to fluorescently label the amino terminus of a protein with the dye, 5-(and-6)-carboxyfluorescein, succinimidyl ester (5(6)-FAM, SE).


Assuntos
Fluoresceínas/química , Corantes Fluorescentes/química , Proteínas/química , Succinimidas/química , Soluções Tampão , Ésteres , Soluções , Espectrofotometria Ultravioleta , Coloração e Rotulagem
14.
J Mol Biol ; 385(2): 491-506, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-18976658

RESUMO

Little is known about the molecular mechanics of the late events of translation initiation in eukaryotes. We present a kinetic dissection of the transition from a preinitiation complex after start codon recognition to the final 80S initiation complex. The resulting framework reveals that eukaryotic initiation factor (eIF)5B actually accelerates the rate of ribosomal subunit joining, and this acceleration is influenced by the conformation of the GTPase active site of the factor mediated by the bound nucleotide. eIF1A accelerates joining through its C-terminal interaction with eIF5B, and eIF1A release from the initiating ribosome, which occurs only after subunit joining, is accelerated by GTP hydrolysis by eIF5B. Following subunit joining, GTP hydrolysis by eIF5B alters the conformation of the final initiation complex and clears a path to promote rapid release of eIF1A. Our data, coupled with previous work, indicate that eIF1A is present on the ribosome throughout the entire initiation process and plays key roles at every stage.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Fatores de Iniciação em Eucariotos/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
15.
J Mol Biol ; 394(2): 268-85, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19751744

RESUMO

Eukaryotic translation initiation factor (eIF) 1 is a central mediator of start codon recognition. Dissociation of eIF1 from the preinitiation complex (PIC) allows release of phosphate from the G-protein factor eIF2, triggering downstream events in initiation. Mutations that weaken binding of eIF1 to the PIC decrease the fidelity of start codon recognition (Sui(-) phenotype) by allowing increased eIF1 release at non-AUG codons. Consistent with this, overexpression of these mutant proteins suppresses their Sui(-) phenotypes. Here, we have examined mutations at the penultimate residue of eIF1, G107, that produce Sui(-) phenotypes without increasing the rate of eIF1 release. We provide evidence that, in addition to its role in gating phosphate release, dissociation of eIF1 triggers conversion from an open, scanning-competent state of the PIC to a stable, closed one. We also show that eIF5 antagonizes binding of eIF1 to the complex and that key interactions of eIF1 with its partners are modulated by the charge at and around G107. Our data indicate that eIF1 plays multiple roles in start codon recognition and suggest that prior to AUG recognition it prevents eIF5 from binding to a key site in the PIC required for triggering downstream events.


Assuntos
Códon de Iniciação/metabolismo , Fator de Iniciação 1 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Substituição de Aminoácidos , Animais , Códon de Iniciação/genética , Fator de Iniciação 1 em Eucariotos/genética , Humanos , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo
16.
Genes Dev ; 22(16): 2242-55, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18708582

RESUMO

High-resolution structures of bacterial 70S ribosomes have provided atomic details about mRNA and tRNA binding to the decoding center during elongation, but such information is lacking for preinitiation complexes (PICs). We identified residues in yeast 18S rRNA critical in vivo for recruiting methionyl tRNA(i)(Met) to 40S subunits during initiation by isolating mutations that derepress GCN4 mRNA translation. Several such Gcd(-) mutations alter the A928:U1389 base pair in helix 28 (h28) and allow PICs to scan through the start codons of upstream ORFs that normally repress GCN4 translation. The A928U substitution also impairs TC binding to PICs in a reconstituted system in vitro. Mutation of the bulge G926 in h28 and certain other residues corresponding to direct contacts with the P-site codon or tRNA in bacterial 70S complexes confer Gcd(-) phenotypes that (like A928 substitutions) are suppressed by overexpressing tRNA(i)(Met). Hence, the nonconserved 928:1389 base pair in h28, plus conserved 18S rRNA residues corresponding to P-site contacts in bacterial ribosomes, are critical for efficient Met-tRNA(i)(Met) binding and AUG selection in eukaryotes.


Assuntos
Códon de Iniciação/genética , Iniciação Traducional da Cadeia Peptídica , RNA Fúngico/genética , RNA Ribossômico 18S/genética , RNA de Transferência de Metionina/genética , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Mutação/genética , Conformação de Ácido Nucleico , Fases de Leitura Aberta , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Immunol ; 177(9): 6192-8, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17056548

RESUMO

We previously showed that human NK cells used the NKp46 receptor to lyse Mycobacterium tuberculosis H37Ra-infected monocytes. To identify ligands on H37Ra-infected human mononuclear phagocytes, we used anti-NKp46 to immunoprecipitate NKp46 from NK cells bound to its ligand(s) on H37Ra-infected monocytes. Mass spectrometry analysis identified a 57-kDa molecule, vimentin, as a putative ligand for NKp46. Vimentin expression was significantly up-regulated on the surface of infected monocytes, compared with uninfected cells, and this was confirmed by fluorescence microscopy. Anti-vimentin antiserum inhibited NK cell lysis of infected monocytes, whereas antiserum to actin, another filamentous protein, did not. CHO-K1 cells transfected with a vimentin construct were lysed much more efficiently by NK cells than cells transfected with a control plasmid. This lysis was inhibited by mAb-mediated masking of NKp46 (on NK cells) or vimentin (on infected monocytes). ELISA and Far Western blotting showed that recombinant vimentin bound to a NKp46 fusion protein. These results indicate that vimentin is involved in binding of NKp46 to M. tuberculosis H37Ra-infected mononuclear phagocytes.


Assuntos
Monócitos/microbiologia , Mycobacterium tuberculosis/imunologia , Receptores Imunológicos/metabolismo , Vimentina/análise , Vimentina/metabolismo , Animais , Anticorpos/farmacologia , Far-Western Blotting , Células CHO , Membrana Celular/química , Cricetinae , Cricetulus , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoprecipitação , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ligantes , Monócitos/química , Monócitos/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural , Fagócitos/química , Fagócitos/metabolismo , Fagócitos/microbiologia , Fagocitose/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vimentina/antagonistas & inibidores
18.
J Biol Chem ; 278(33): 30569-77, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12773528

RESUMO

To explore the interdomain co-operativity during human plasminogen (HPG) activation by streptokinase (SK), we expressed the cDNAs corresponding to each SK domain individually (alpha, beta, and gamma), and also their two-domain combinations, viz. alphabeta and betagamma in Escherichia coli. After purification, alpha and beta showed activator activities of approximately 0.4 and 0.05%, respectively, as compared with that of native SK, measured in the presence of human plasmin, but the bi-domain constructs alphabeta and betagamma showed much higher co-factor activities (3.5 and 0.7% of native SK, respectively). Resonant Mirror-based binding studies showed that the single-domain constructs had significantly lower affinities for "partner" HPG, whereas the affinities of the two-domain constructs were remarkably native-like with regards to both binary-mode as well as ternary mode ("substrate") binding with HPG, suggesting that the vast difference in co-factor activity between the two- and three-domain structures did not arise merely from affinity differences between activator species and HPG. Remarkably, when the co-factor activities of the various constructs were measured with microplasminogen, the nearly 50-fold difference in the co-factor activity between the two- and three-domain SK constructs observed with full-length HPG as substrate was found to be dramatically attenuated, with all three types of constructs now exhibiting a low activity of approximately 1-2% compared to that of SK.HPN and HPG. Thus, the docking of substrate through the catalytic domain at the active site of SK-plasmin(ogen) is capable of engendering, at best, only a minimal level of co-factor activity in SK.HPN. Therefore, apart from conferring additional substrate affinity through kringle-mediated interactions, reported earlier (Dhar et al., 2002; J. Biol. Chem. 277, 13257), selective interactions between all three domains of SK and the kringle domains of substrate vastly accelerate the plasminogen activation reaction to near native levels.


Assuntos
Fibrinolisina/metabolismo , Ativadores de Plasminogênio/metabolismo , Plasminogênio/metabolismo , Estreptoquinase/metabolismo , Domínio Catalítico , DNA Complementar , Escherichia coli , Humanos , Kringles , Ativadores de Plasminogênio/química , Ativadores de Plasminogênio/genética , Estrutura Terciária de Proteína , Estreptoquinase/química , Estreptoquinase/genética , Especificidade por Substrato
19.
J Biol Chem ; 277(15): 13257-67, 2002 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11821385

RESUMO

The selective deletion of a discrete surface-exposed epitope (residues 254-262; 250-loop) in the beta domain of streptokinase (SK) significantly decreased the rates of substrate human plasminogen (HPG) activation by the mutant (SK(del254-262)). A kinetic analysis of SK(del254-262) revealed that its low HPG activator activity arose from a 5-6-fold increase in K(m) for HPG as substrate, with little alteration in k(cat) rates. This increase in the K(m) for the macromolecular substrate was proportional to a similar decrease in the binding affinity for substrate HPG as observed in a new resonant mirror-based assay for the real-time kinetic analysis of the docking of substrate HPG onto preformed binary complex. In contrast, studies on the interaction of the two proteins with microplasminogen showed no difference between the rates of activation of microplasminogen under conditions where HPG was activated differentially by nSK and SK(del254-262). The involvement of kringles was further indicated by a hypersusceptibility of the SK(del254-262).plasmin activator complex to epsilon-aminocaproic acid-mediated inhibition of substrate HPG activation in comparison with that of the nSK.plasmin activator complex. Further, ternary binding experiments on the resonant mirror showed that the binding affinity of kringles 1-5 of HPG to SK(del254-262).HPG was reduced by about 3-fold in comparison with that of nSK.HPG . Overall, these observations identify the 250 loop in the beta domain of SK as an important structural determinant of the inordinately stringent substrate specificity of the SK.HPG activator complex and demonstrate that it promotes the binding of substrate HPG to the activator via the kringle(s) during the HPG activation process.


Assuntos
Kringles , Estreptoquinase/metabolismo , Sequência de Bases , Técnicas Biossensoriais , Primers do DNA , Humanos , Hidrólise , Cinética , Modelos Moleculares , Plasminogênio/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Estreptoquinase/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA