Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 20(11): 4107-4116, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31573794

RESUMO

Bombyx mori L. silk fibroin (SF) is widely used in different areas due to its ability to form durable and resilient materials with notable mechanical properties. However, in some of these applications the dissolution of SF is required, and this is not often straightforward due to its inability to be dissolved in the majority of common solvents. This work reports a novel approach to dissolve SF using 40 wt % aqueous tetrabutylammonium hydroxide, TBAOH(aq), at mild temperature. A thorough rheological study combined with small-angle X-ray scattering is presented to correlate the SF state in solution with changes in the rheological parameters. The scattering data suggest that the SF conformation in TBAOH(aq) is close to a random coil, possibly having some compact domains linked with flexible random chains. The radius of gyration (Rg) and the molecular weight (Mw) were estimated to be ca. 17.5 nm and 450 kDa, respectively, which are in good agreement with previous works. Nevertheless, a lower Mw value was deduced from rheometry (i.e., 321 kDa) demonstrating a low degree of depolymerization during dissolution in comparison to other harsh processes. The transition from a dilute to a semidilute regime coincides with the estimated critical concentration and is marked by the presence of a shear-thinning behavior in the flow curves, violation of the empirical Cox-Merz rule, and an upward increase in the activation energy. This work paves the way toward the development of advanced high-tech SF-based materials.


Assuntos
Fibroínas/química , Compostos de Amônio Quaternário/química , Soluções , Solventes/química , Animais , Bombyx/química , Conformação Molecular , Reologia , Solubilidade , Soluções/química , Temperatura , Água/química
2.
Langmuir ; 34(30): 8857-8865, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29979601

RESUMO

Natural cellulose has been used as a coating to stabilize oil-in-water (o/w) emulsions by exploiting the amphiphilic character of the cellulose chains molecularly dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Its cellulose coating exhibits a continuous amorphous structure which differs significantly from the cellulose particle stabilization used in Pickering emulsions. The structure of these cellulose-coated o/w emulsion particles, in particular the cellulose coating shell characteristics (thickness, porosity, and composition), is studied by using a combination of direct imaging methods such as cryogenic electron microscopy and fluorescence microscopy with small-angle neutron scattering measurements. This work suggests a unique multicompartment structure of the emulsion particles: an oil core, surrounded by an inner shell composed of a porous cellulose gel, encapsulated by a dense outer cellulose shell, a few nanometers in thickness. The thickness of the inner cellulose shell varies significantly. The nanoscale emulsion droplets exhibit a thickness of 10 ± 3 nm, whereas the larger micron-sized droplets exhibit a thicker inner cellulose shell of 500-750 nm. It is also inferred that the cellulose shells contain water rather than oil.

3.
Colloids Surf B Biointerfaces ; 137: 70-6, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26054295

RESUMO

Cellulose hydrogel particles were fabricated from molecularly-dissolved cellulose/IL solutions. The characteristics of the formed hydrogels (cellulose content, particles' size and porosity) were determined as a function of cellulose concentration in the precursor solutions. There is a significant change in the hydrogel structure when the initial cellulose solution concentration increases above about 7-9%wt. These changes include increase of the cellulose content in the hydrogel, and decrease in its pore size. The finest cellulose particle dispersions can be obtained using low concentration cellulose/IL solutions (cellulose concentration in dispersion less than 2%wt.) or hydrogels (concentration less than 1%wt.) in a dispersing medium consisting of IL with no more than 20%wt. water. Stable paraffin oil-in-water emulsions are achieved by mixing oil and water with cellulose/IL solutions. The optimal conditions for obtaining the finest particles (about 20µm in diameter) are attained using cellulose solutions of concentration between 0.7 and 4%wt. at temperature of 70°C and oil/cellulose mass ratios between 1 and 1.5.


Assuntos
Celulose/química , Emulsões , Hidrogéis/química , Microscopia Eletrônica de Varredura , Óleos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA