Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Mol Pharm ; 18(9): 3429-3438, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34338529

RESUMO

Solubility enhancement has become a common requirement for formulation development to deliver poorly water soluble drugs. Amorphous solid dispersions (ASDs) and salt formation have been two successful strategies, yet there are opportunities for further development. For ASDs, drug-polymer phase separation may occur at high drug loadings during dissolution, limiting the increase of drug loadings in ASD formulations. For salt formation, a salt form with high crystallinity and sufficient solid-state stability is required for solid dosage form development. This work studied the effect of counterions on the dissolution performance of ASDs. Surface area normalized dissolution or intrinsic dissolution methodology was employed to eliminate the effect of particle size and provide a quantitative comparison of the counterion effect on the intrinsic dissolution rate. Using indomethacin (IMC)-poly(vinylpyrrolidone-co-vinyl acetate) ASD as a model system, the effect of different bases incorporated into the ASD during preparation, the molar ratios between the base and IMC, and the drug loadings in the ASD were systematically studied. Strong bases capable of ionizing IMC significantly enhanced drug dissolution, while a weak base did not. A physical mixture of a strong base and the ASD also enhanced the dissolution rate, but the effect was less pronounced. At different base to IMC molar ratios, dissolution enhancement increased with the base to IMC ratio. At different drug loadings, without a base, the IMC dissolution rate decreased with the increase of drug loading. After incorporating a strong base, it increased with the increase of drug loading. The observations from this study were thought to be related to both the ionization of IMC in ASDs and the increase of microenvironment pH by the incorporated bases. With the significant enhancement of the drug dissolution rate, our work provides a promising approach of overcoming the dissolution limitation of ASD formulations at high drug loadings.


Assuntos
Portadores de Fármacos/química , Indometacina/farmacocinética , Cristalização , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Indometacina/administração & dosagem , Íons/química , Tamanho da Partícula , Polímeros/química , Solubilidade
2.
Mol Pharm ; 16(10): 4339-4351, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31454254

RESUMO

Micronization of crystalline active pharmaceutical ingredients can lead to formation of a thermodynamically unstable material with surface disorder. This material undergoes structural stabilization and particle-level changes over time that, in turn, alters the surface properties and interparticle interactions of the micronized drug. The unstable nature of the micronized drug can lead to variability in the performance of dry powder inhaler drug products. To improve the physicochemical stability of the micronized drug, an annealing step is often introduced. However, there is limited understanding of changes in the micronized drug under different annealing conditions. In this study, we examine the molecular- and particle-level changes occurring in a micronized drug during annealing under varying temperature and humidity conditions using orthogonal techniques. We demonstrate the use of surface free energy (SFE) measured by inverse gas chromatography (IGC) to monitor surface-specific changes. Micronization led to an increase in SFE, which progressively reduced during annealing. SFE trends correlated with the molecular-level surface disorder patterns measured by relative humidity perfusion microcalorimetry. The interparticle interactions tracked using IGC and atomic force microscopy show that as the micronized drug stabilized, there was a transition from dominant drug-drug cohesive forces to drug-lactose adhesive forces. For the nonhygroscopic model compound, combined high temperature-high humidity conditions showed fastest annealing kinetics. Further, the SFE descriptor enabled us to differentiate the extent of mechanical activation of the neat micronized drug and co-micronized drug-magnesium stearate blends. The study identifies tools for characterizing postmicronization material changes that can help develop materials with consistent quality.


Assuntos
Composição de Medicamentos , Lactose/química , Preparações Farmacêuticas/química , Pós/química , Aerossóis , Química Farmacêutica , Umidade , Propriedades de Superfície , Temperatura
3.
Pharm Res ; 36(12): 164, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31637544

RESUMO

PURPOSE: To describe a stepwise approach to evaluate the pH effect for a weakly basic drug by in vitro, in vivo and in silico techniques and identify a viable mitigation strategy that addresses the risk. METHODS: Clinical studies included assessment of the pH effect with famotidine. In vitro dissolution was evaluated in various biorelevant media and in a pH-shift test. PK studies in dogs were conducted under pentagastrin or famotidine pre-treatment and GastroPlus was employed to model human and dog PK data and simulate the performance in human. RESULTS: Clinical data indicated considerable pH dependent absorption of the drug when dosed in the presence of H2-antagonists. In vitro dissolution and in vivo dog data confirmed that the observed pH effect was due to reduced dissolution rate and lower solubility at increased gastric and intestinal pH. A salt form was identified to overcome the effect by providing fast dissolution and prolonged supersaturation. GastroPlus simulations predicted a mitigation of the pH effect by the salt. CONCLUSIONS: The drug exhibited a strong pH-effect in humans. The in vitro, in vivo and modeling approach provides a systematic workflow to evaluate the risk of a new drug and identify a strategy able to mitigate the risk.


Assuntos
Antiulcerosos/farmacocinética , Simulação por Computador , Composição de Medicamentos/métodos , Famotidina/farmacocinética , Absorção Intestinal , Modelos Biológicos , Administração Oral , Animais , Antiulcerosos/administração & dosagem , Disponibilidade Biológica , Cães , Famotidina/administração & dosagem , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino
4.
AAPS PharmSciTech ; 20(5): 179, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31041552

RESUMO

There is an overgrowing emphasis on supersaturating drug delivery systems (SDDS) with increase in number of poorly water-soluble compounds. However, biopharmaceutical performance from these formulations is limited by phase transformation to stable crystalline form due to their high-energy physical form. In the present study, in vitro kinetic solubility in water and dissolution in biorelevant medium integrated with in silico physiologically based pharmacokinetic (PBPK) modeling was used to predict biopharmaceutical performance of SDDS of poorly water-soluble compound, carbamazepine (CBZ). GastroPlus™ with advanced compartmental absorption and transit model was used as a simulation tool for the study. Wherein, the model was developed using physicochemical properties of CBZ and disposition parameters obtained after intravenous administration of CBZ (20 mg/kg) into Sprague-Dawley (SD) rats. Biorelevant medium was selected by screening different dissolution media for their capability to predict oral plasma concentration-time profile of marketed formulation of CBZ. In vivo performance of SDDS was predicted with the developed model and compared to observed plasma concentration-time profile obtained after oral administration of SDDS into SD rats (20 mg/kg). The predictions, with strategy of using kinetic solubility and dissolution in the selected biorelevant medium, were consistent with observed biopharmaceutical performance of SDDS. Additionally, phase transformation of CBZ during gastrointestinal transit of formulations was evaluated and correlated with in vivo dissolution deconvoluted by Loo-Reigelman analysis.


Assuntos
Anticonvulsivantes/farmacocinética , Carbamazepina/farmacocinética , Administração Intravenosa , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/química , Biofarmácia , Carbamazepina/administração & dosagem , Carbamazepina/química , Simulação por Computador , Composição de Medicamentos , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Solubilidade
5.
AAPS PharmSciTech ; 18(3): 803-808, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27342117

RESUMO

Formation of isoaspartate (IsoAsp) from spontaneous asparagine (Asn) deamidation or aspartate (Asp) isomerization is one of the most common non-enzymatic pathways of chemical degradation of protein and peptide pharmaceuticals. Rapid quantitation of IsoAsp formation can enable rank-ordering of potential drug candidates, mutants, and formulations as well as support shelf life prediction and stability requirements. A coupled enzymatic fluorescence-based IsoAsp assay (CEFIA) was developed as a high-throughput method for quantitation of IsoAsp in peptides and proteins. In this note, application of this method to two therapeutic candidate proteins with distinct structural scaffolds is described. In addition, the results obtained with this method are compared to those from conventional assays.


Assuntos
Ácido Isoaspártico/química , Peptídeos/química , Proteínas/química , Asparagina/química , Ácido Aspártico/química , Ensaios Enzimáticos/métodos , Fluorescência , Isomerismo
6.
Pharm Res ; 32(1): 248-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25037862

RESUMO

PURPOSE: Surface area and surface energy of pharmaceutical powders are affected by milling and may influence formulation, performance and handling. This study aims to decouple the contribution of surface area and surface energy, and to quantify each of these factors, on cohesion. METHODS: Mefenamic acid was processed by cryogenic milling. Surface energy heterogeneity was determined using a Surface Energy Analyser (SEA) and cohesion measured using a uniaxial compression test. To decouple the surface area and surface energy contributions, milled mefenamic acid was "normalised" by silanisation with methyl groups, confirmed using X-ray Photoelectron Spectroscopy. RESULTS: Both dispersive and acid-base surface energies were found to increase with increasing milling time. Cohesion was also found to increase with increasing milling time. Silanised mefenamic acid possessed a homogenous surface with a surface energy of 33.1 ± 1.4 mJ/m(2) , for all milled samples. The cohesion for silanised mefenamic acid was greatly reduced, and the difference in the cohesion can be attributed solely to the increase in surface area. For mefenamic acid, the contribution from surface energy and surface area on cohesion was quantified to be 57% and 43%, respectively. CONCLUSIONS: Here, we report an approach for decoupling and quantifying the contribution from surface area and surface energy on powder cohesion.


Assuntos
Anti-Inflamatórios não Esteroides/química , Ácido Mefenâmico/química , Tecnologia Farmacêutica/métodos , Cristalização , Excipientes/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Pós , Silanos/química , Propriedades de Superfície
7.
Pharm Res ; 32(8): 2579-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25724158

RESUMO

PURPOSE: Precipitation of weakly basic drugs in intestinal fluids can affect oral drug absorption. In this study, the implications of self-association of brivanib alaninate in acidic aqueous solution, leading to supersaturation at basic pH condition, on its solubility and oral absorption were investigated. METHODS: Self-association of brivanib alaninate was investigated by proton NMR spectroscopy, surface tension measurement, dynamic light scattering, isothermal titration calorimetry, and molecular modeling. Drug solubility was determined in various pH media, and its tendency to supersaturate upon pH shift was investigated in buffered and biorelevant aqueous solutions. Pharmacokinetic modeling of human oral drug absorption was utilized for parameter sensitivity analyses of input variables. RESULTS: Brivanib alaninate exhibited continuous, and pH- and concentration-dependent self-association. This phenomenon resulted in positive deviation of drug solubility at acidic pH and the formation of a stable supersaturated drug solution in pH-shift assays. Consistent with the supersaturation phenomenon observed in vitro, oral absorption simulations necessitated invoking long precipitation time in the intestine to successfully predict in vivo data. CONCLUSIONS: Self-association of a weakly basic drug in acidic aqueous solution can increase its oral absorption by supersaturation and precipitation resistance at the intestinal pH. This consideration is important to the selection of parameters for oral absorption simulation.


Assuntos
Alanina/análogos & derivados , Triazinas/química , Triazinas/farmacocinética , Administração Oral , Alanina/química , Alanina/farmacocinética , Soluções Tampão , Calorimetria , Química Farmacêutica , Coloides , Simulação por Computador , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Tamanho da Partícula , Solubilidade , Tensão Superficial
8.
Pharm Res ; 31(1): 160-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23943544

RESUMO

PURPOSE: The molecular basis of crystal surface adhesion leading to sticking was investigated by exploring the correlation of crystal adhesion to oxidized iron coated atomic force microscope (AFM) tips and bulk powder sticking behavior during tableting of two morphologically different crystals of a model drug, mefenamic acid (MA), to differences in their surface functional group orientation and energy. METHODS: MA was recrystallized into two morphologies (plates and needles) of the same crystalline form. Crystal adhesion to oxidized iron coated AFM tips and bulk powder sticking to tablet punches was assessed using a direct compression formulation. Surface functional group orientation and energies on crystal faces were modeled using Accelrys Material Studio software. RESULTS: Needle-shaped morphology showed higher sticking tendency than plates despite similar particle size. This correlated with higher crystal surface adhesion of needle-shaped morphology to oxidized iron coated AFM probe tips, and greater surface energy and exposure of polar functional groups. CONCLUSIONS: Higher surface exposure of polar functional groups correlates with higher tendency to stick to metal surfaces and AFM tips, indicating involvement of specific polar interactions in the adhesion behavior. In addition, an AFM method is identified to prospectively assess the risk of sticking during the early stages of drug development.


Assuntos
Ácido Mefenâmico/química , Comprimidos/química , Adesividade , Química Farmacêutica/métodos , Cristalização , Composição de Medicamentos/métodos , Microscopia de Força Atômica/métodos , Tamanho da Partícula , Pós/química , Propriedades de Superfície
9.
Pharm Res ; 29(10): 2639-59, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22610283

RESUMO

Excipients are generally pharmacologically inert, but can interact with drugs in the dosage form and the physiological factors at the site of absorption to affect the bioavailability of a drug product. A general mechanistic understanding of the basis of these interactions is essential to design robust drug products. This paper focuses on drug-excipient interactions in solid dosage forms that impact drug bioavailability, the drug substance and drug product properties affected by excipients, and the impact of excipients on physiologic processes. The extent to which drug bioavailability is affected by these interactions would vary on a case-by-case basis depending upon factors such as the potency and dose of the drug, therapeutic window, site of absorption, rate limiting factor in drug absorption (e.g., permeability or solubility limited), or whether drug metabolism, efflux, complexation, or degradation at the site of absorption play a role in determining its bioavailability. Nonetheless, a mechanistic understanding of drug-excipient interactions and their impact on drug release and absorption can help develop formulations that exhibit optimum drug bioavailability.


Assuntos
Excipientes/administração & dosagem , Excipientes/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Absorção , Animais , Disponibilidade Biológica , Formas de Dosagem , Humanos
10.
Pharm Res ; 29(10): 2660-83, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22707362

RESUMO

Drug-excipient interactions in solid dosage forms can affect drug product stability in physical aspects such as organoleptic changes and dissolution slowdown, or chemically by causing drug degradation. Recent research has allowed the distinction in chemical instability resulting from direct drug-excipient interactions and from drug interactions with excipient impurities. A review of chemical instability in solid dosage forms highlights common mechanistic themes applicable to multiple degradation pathways. These common themes include the role of water and microenvironmental pH. In addition, special aspects of solid-state reactions with excipients and/or excipient impurities add to the complexity in understanding and modeling reaction pathways. This paper discusses mechanistic basis of known drug-excipient interactions with case studies and provides an overview of common underlying themes. Recent developments in the understanding of degradation pathways further impact methodologies used in the pharmaceutical industry for prospective stability assessment. This paper discusses these emerging aspects in terms of limitations of drug-excipient compatibility studies, emerging paradigms in accelerated stability testing, and application of mathematical modeling for prediction of drug product stability.


Assuntos
Excipientes/química , Preparações Farmacêuticas/química , Formas de Dosagem , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Água/química
11.
Pharm Res ; 29(10): 2635-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22936283

RESUMO

Complete characterization and mechanistic understanding of physicochemical interactions in solid dosage forms are not only important for consistent manufacturability, stability, and bioavailability of the drug product, but are also expected under the quality-by-design paradigm of drug development. Lack of this understanding can impact successful and timely development, scale-up, and commercial manufacture of dosage forms. This article highlights the stability and bioavailability implications of physicochemical interactions in dosage forms citing a couple of examples where such interactions necessitated the recall of commercial drug products.


Assuntos
Formas de Dosagem , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Disponibilidade Biológica , Fenômenos Químicos , Descoberta de Drogas/métodos , Estabilidade de Medicamentos
12.
J Pharm Sci ; 111(8): 2172-2179, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35640732

RESUMO

Physical instability of aqueous drug solutions, such as precipitation upon storage, has so far been difficult to predict or model. Understanding the molecular basis of such phenomena can help mitigate by influencing the product composition and by providing a mechanistic basis of experimental and in silico investigations. In this study, inconsistent precipitation of a model drug, GNE-01 in aqueous solutions was investigated. Chromatographic analyses of the drug solution that showed precipitation upon storage versus the one that did not indicate lack of covalent modification or degradation of the drug, suggesting that the precipitation was a physical phenomenon. Molecular level investigations were conducted using surface tension measurement and nuclear magnetic resonance (NMR) spectroscopy. The studies revealed self-association of the weakly basic drug in solution at slightly acidic pH values which was strengthened by the presence of polyionic excipients. The role of polyionic excipients in facilitating drug precipitation on storage was indicative of shifting solution equilibria in favor of a lower solubility drug-excipient complex. This study highlighted the importance of molecular understanding in mitigating difficult to predict physical instability of self-associating drugs in solution.


Assuntos
Excipientes , Água , Excipientes/química , Solubilidade , Tensão Superficial
13.
Int J Pharm ; 615: 121470, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35041913

RESUMO

In this study, we evaluated the aerodynamic performance, dissolution, and permeation behavior of micronized fluticasone propionate (FP) and magnesium stearate (MgSt) binary mixtures. Micronized FP was dry mixed with 2% w/w MgSt using a tumble mixer and a resonant acoustic mixer (RAM) with and without heating. The mixing efficacy was determined by X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) analysis. Additional techniques were used to determine powder properties such as the dynamic vapor sorption (DVS), particle size distribution (PSD) by laser diffraction light scattering, and particle surface properties by scanning electron microscope (SEM). The aerodynamic performance was studied by the next-generation impactor (NGI) using drug-loaded capsules in a PlastiApi® device. Physiochemical properties such as porosity, particle size distribution, and surface area of the formulations were studied with adsorption and desorption curves fitted to several well-known models including Brunauer-Emmett-Teller (BET), Barret Joyner Halenda (BJH), and the density functional theory (DFT). The dissolution behavior of the formulations collected on the transwell inserts incorporated into stages 3, 5, and 7 of the NGI with a membrane providing an air interface was evaluated. Drug permeability of formulations was assessed by directly depositing particles on Calu-3 cells at the air-liquid interface (ALI). Drug concentration was determined by LC-MS/MS. A better MgSt mixing on micronized FP particles was achieved by mixing with a RAM with and without heating than with a tumble mixer. A significant concomitant increase in the % of emitted dose and powder aerosol performance was observed after MgSt mixing. Formulation 4 (RAM mixing at room temperature) showed the highest rate of permeability and correlation with dissolution profile. The results show that the surface enrichment of hydrophobic MgSt improved aerosolization properties and the dissolution and permeability rate of micronized FP by reducing powder agglomerations. A simple low-shear acoustic dry powder mixing method was found to be efficient and substantially improved the powder aerosolization properties and enhanced dissolution and permeability rate.


Assuntos
Inaladores de Pó Seco , Espectrometria de Massas em Tandem , Administração por Inalação , Aerossóis , Cromatografia Líquida , Fluticasona , Tamanho da Partícula , Permeabilidade , Pós , Ácidos Esteáricos , Propriedades de Superfície
14.
Pharm Res ; 28(12): 2996-3015, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22033880

RESUMO

RNA interference (RNAi) strategies include double-stranded RNA (dsRNA), small interfering RNA (siRNA), short hairpin RNA (shRNA), and microRNA (miRNA). As this is a highly specific technique, efforts have been made to utilize RNAi towards potential knock down of disease-causing genes in a targeted fashion. RNAi has the potential to selectively inhibit gene expression by degrading or blocking the translation of the target mRNA. However, delivering these RNAs to specific cells presents a significant challenge. Some of these challenges result from the necessity of traversing the circulatory system while avoiding kidney filtration, degradation by endonucleases, aggregation with serum proteins, and uptake by phagocytes. Further, non-specific delivery may result in side-effects, including the activation of immune response. We discuss the challenges in the systemic delivery to target cells, cellular uptake, endosomal release and intracellular transport of RNAi drugs and recent progress in overcoming these barriers. We also discuss approaches that increase the specificity and metabolic stability and reduce the off-target effects of RNAi strategy.


Assuntos
MicroRNAs/administração & dosagem , MicroRNAs/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/metabolismo , Animais , Transporte Biológico , Humanos , MicroRNAs/genética , MicroRNAs/farmacocinética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética , Frações Subcelulares/metabolismo
15.
AAPS PharmSciTech ; 12(4): 1248-63, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21948318

RESUMO

Reactive impurities in pharmaceutical excipients could cause drug product instability, leading to decreased product performance, loss in potency, and/or formation of potentially toxic degradants. The levels of reactive impurities in excipients may vary between lots and vendors. Screening of excipients for these impurities and a thorough understanding of their potential interaction with drug candidates during early formulation development ensure robust drug product development. In this review paper, excipient impurities are categorized into six major classes, including reducing sugars, aldehydes, peroxides, metals, nitrate/nitrite, and organic acids. The sources of generation, the analytical method for detection, the stability of impurities upon storage and processing, and the potential reactions with drug candidates of these impurities are reviewed. Specific examples of drug-excipient impurity interaction from internal research and literature are provided. Mitigation strategies and corrective measures are also discussed.


Assuntos
Contaminação de Medicamentos , Excipientes/química , Preparações Farmacêuticas/química , Química Farmacêutica , Composição de Medicamentos , Estabilidade de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Modelos Químicos , Tecnologia Farmacêutica/métodos
16.
J Pharm Sci ; 110(11): 3614-3622, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34233152

RESUMO

The purpose of the study is to present the finite difference method (FDM) and demonstrate its utility in modeling mass transport processes that are pharmaceutically relevant. In particular, diffusion processes are ideally suited for FDM because the governing equation, Fick's second law of diffusion, can be readily solved using FDM over a finite space and time. The method entails the mesh creation, space and time discretization, and solving Fick's second law at each node using finite difference-based numerical schemes. We applied FDM to study tablet disintegration, in which the tablet water uptake was simulated with an effective water diffusion coefficient; the tablet disintegration was controlled by a designated critical water content parameter, beyond which the node is treated as being disintegrated from the tablet. The resulting simulation agreed with the experimental tablet disintegration behaviors, under both disintegration-controlled and water uptake-controlled conditions. This study highlighted the unique advantage of FDM, capable of providing spatial-temporal information on water uptake and evolution of tablet size and shape during tablet disintegration, which was otherwise not available using other methods. The FDM method enabled more in-depth tablet disintegration studies. The model also has the potential to be calibrated and incorporated in tablet formulation DoE studies.


Assuntos
Água , Difusão , Solubilidade , Comprimidos
17.
J Pharm Sci ; 110(7): 2669-2676, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33610569

RESUMO

In tablet manufacturing, mixing operations in tumble blending (TB) and in the feed frame (FF) of the rotary press can both increase lubricity, negatively influencing the tablet mechanical strength. While the TB-driven lubrication was systematically studied, no reliable bench-scale methods exist for the effect of FF lubrication. Because TB and FF mixing are usually two successive operations in tablet manufacturing, we developed a phenomenological model to incorporate the impact of TB-driven lubrication and the FF lubrication on the tablet tensile strength (TS). We noted that exponential decay functions can describe the evolution of the tablet TS as the function of the extent of TB, as well as the residence time in FF. Hence, the overall lubrication sensitivity can be modeled by incorporating two distinct exponential decay functions. The model can be calibrated through bench-scale experiments. Using an investigational powder blend, we showed that this approach accurately predicted the tablet TS in a scale-up tablet compression study, thereby verifying its utility. This model can serve as a scale-up diagnostic and risk-assessment tool, with the ability to adjust the overall effect of lubrication by changing the TB scale and the FF residence time commensurate with the large-scale operations.


Assuntos
Lubrificação , Composição de Medicamentos , Pós , Comprimidos , Resistência à Tração
18.
Int J Pharm ; 601: 120579, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839226

RESUMO

The purpose of the study is to build a "virtual roller compactor" as a predictive tool to assess the roll force (RF)-maximum pressure (Pmax) and RF-ribbon density relationship for pharmaceutical roller compaction. We provided a theoretical basis to demonstrate that, there exists a critical nip angle for a pharmaceutical powder, beyond which the RF-Pmax relationship is insensitive to wall friction angle or effective angle of internal friction. We showed that for most pharmaceutical roller compaction, the critical nip angle is lower than 17 degree, and can be exceeded via wall friction elevation, using rolls with non-smooth surface. Under this condition, the original Johanson model can be substantially simplified to a single equation requiring only one material property (compressibility). By performing manufacturing-scale roller compaction using materials with diverse compressibility, we showed that the simplified, friction angle-free model performed similar to the original Johanson model. It can predict the RF-Pmax and RF-ribbon density relationship well after applying a correction factor. The predictive tool, in the form of a user-friendly graphical user interface, was created based on the simplified model. The tool was adopted for in-house, bench-scale formulation development and scale-up because of its ease-of-use, good predicting capability, and very low material demand.


Assuntos
Tecnologia Farmacêutica , Composição de Medicamentos , Fricção , Tamanho da Partícula , Pós , Comprimidos
19.
J Pharm Sci ; 110(3): 1172-1181, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33049262

RESUMO

The purpose of this study is to assess the prevalence of funnel flow pattern for common pharmaceutical powder blends, upon discharging from modern intermediate bulk containers (IBCs) in drug product manufacturing. The estimation was built upon Jenike's original radial stress field theory. It was modified to account for the stress-dependence of wall friction angle commonly observed in pharmaceutical powders. A total of 260 flow pattern estimations, based on 20 real-life IBCs and 13 investigational powder blends, were made. The estimated results showed that the mass flow pattern is present in less than 5% of all cases. Funnel flow pattern is clearly prevalent among pharmaceutical powder blends. The prevalence of funnel flow stems from several factors: 1) relatively shallow hopper section shared by all IBCs, 2) the common transition-type geometry, leading to even shallower hopper inclination at the edge of the hopper section, and 3) relatively high wall friction angles resulting from low wall normal stresses. This conclusion was verified through at-scale experiments, by discharging multiple pharmaceutical powder blends from a representative IBC. In general, our study suggests that, unless the powder wall friction can be substantially reduced, pharmaceutical powders are likely to discharge under funnel flow from modern IBCs.


Assuntos
Excipientes , Alta do Paciente , Fricção , Humanos , Tamanho da Partícula , Pós , Tecnologia Farmacêutica
20.
Int J Pharm ; 583: 119404, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32387312

RESUMO

Pulmonary drug delivery is a non-invasive and effective route for local or systemic drug administration. Despite several products in the market, the mechanism of drug absorption from the lungs is not well understood. An in vitro model for aerosol deposition and transport across epithelia that uses particle deposition may be a good predictor of and help understand in vivo drug disposition. The objective of this study was to examine the uptake of HFA fluticasone (Flovent HFA) particles at various stages of the Next Generation Impactor (NGI) by human Calu-3 cell line derived from human bronchial respiratory epithelial cell monolayer. Particles were directly deposited on Calu-3 cells incorporated onto stages 3, 5, and 7 of the NGI at the air-liquid interface (ALI). We modified the NGI apparatus to allow particle deposition directly on cells and determined the in vitro deposition characteristics using modified NGI. Particles of different size ranges showed different in vitro epithelial transport rates. This study highlights the need to develop in vitro test systems to determine the deposition of aerosol particles on cell monolayers by simultaneously considering aerodynamic properties.


Assuntos
Brônquios/metabolismo , Células Epiteliais/metabolismo , Fluticasona/administração & dosagem , Tecnologia Farmacêutica/instrumentação , Administração por Inalação , Aerossóis , Transporte Biológico , Brônquios/citologia , Linhagem Celular , Composição de Medicamentos , Desenho de Equipamento , Fluticasona/química , Fluticasona/metabolismo , Humanos , Tamanho da Partícula , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA