Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 37(20): e9615, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37706431

RESUMO

RATIONALE: Hesperidin (HES) is a well-known citrus bioflavonoid phyto-nutraceutical agent with polypharmacological properties. After 2019, HES was widely used for prophylaxis and COVID-19 treatment. Moreover, it is commonly prescribed for treating varicose veins and other diseases in routine clinical practice. Pharmaceutical impurities and degradation products (DP) impact the drug's quality and safety and thus its effectiveness. Therefore, forced degradation studies help study drug stability, degradation mechanisms, and their DPs. This study was performed because stress stability studies using detailed structural characterization of hesperidin are currently unavailable in the literature. METHODS: In the HES enrichment method crude HES was converted to its pure form (98% purity) using column chromatography and then subjected to forced degradation under acid, base, and neutral hydrolyses followed by oxidative, reductive, photolytic, and thermal stress testing (International Conference on Harmonization guidelines). The stability-indicating analytical method (SIAM) was developed to determine DPs using reversed-phase high-performance liquid chromatography (C18 column with methanol and 0.1% v/v acetic acid in deionized water [70:30, v/v] at 284 nm). Further, structural characterization of DPs was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. In addition, in silico toxicity predictions were performed using pKCSM and DataWarior freeware. RESULTS: HES was found to be susceptible to acidic and basic hydrolytic conditions and yielded three DPs in each, which were detected using designed SIAM. Of six DPs, three were pseudo-DPs (short lived), and the remaining were characterized using LC-MS/MS and NMR spectroscopy. The tentative mechanism of the formation of proposed DPs was explained. The proposed DPs were found inactive from in silico toxicity predictions. CONCLUSIONS: Hesperidin was labile under acidic and basic stress conditions. The potential DPs were characterized using LC-ESI-MS/MS and NMR spectral techniques. The proposed mechanism of formation was hypothesized. In addition, to identify and characterize the DPs, a SIAM, which has broad biomedical applications, was successfully developed.


Assuntos
COVID-19 , Hesperidina , Humanos , Cromatografia Líquida , Tratamento Farmacológico da COVID-19 , Espectrometria de Massas em Tandem
2.
Biomed Chromatogr ; 37(5): e5600, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36760100

RESUMO

Fenugreek seeds are used in numerous marketed herbal formulations with therapeutic benefits. Some of its bioactive components such as 4-hydroxyisoleucine, trigonelline, raffinose, and pinitol are reported to possess potential therapeutic activities, such as antibacterial, antidiabetic, stomach stimulant, and anti-invasive, against hyperandrogenism and other allied diseases, including polycystic ovary syndrome. A fully validated, selective, and sensitive bioanalytical method for the simultaneous rapid quantification of the aforementioned bioactive components has been developed using hyphenated liquid chromatography electrospray tandem mass spectrometry. The analytes were separated within 5 min using gradient elution in a C18 column at a flow rate of 0.5 ml/min. Plasma protein precipitation technique was employed to isolate the analytes from the samples. Oral pharmacokinetic profile of the four bioactive components in Sprague-Dawley rats was further evaluated using noncompartmental analysis using Phoenix WinNonlin software.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Ratos , Animais , Feminino , Ratos Sprague-Dawley , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
3.
Molecules ; 28(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138601

RESUMO

The uncontrolled spread of drug-resistant tuberculosis (DR-TB) clinical cases necessitates the urgent discovery of newer chemotypes with novel mechanisms of action. Here, we report the chemical synthesis of rationally designed novel transition-state analogues (TSAs) by targeting the cyclization (Cy) domain of phenyloxazoline synthase (MbtB), a key enzyme of the conditionally essential siderophore biosynthesis pathway. Following bio-assay-guided evaluation of TSA analogues preferentially in iron-deprived and iron-rich media to understand target preferentiality against a panel of pathogenic and non-pathogenic mycobacteria strains, we identified a hit, i.e., TSA-5. Molecular docking, dynamics, and MMPBSA calculations enabled us to comprehend TSA-5's stable binding at the active site pocket of MbtB_Cy and the results imply that the MbtB_Cy binding pocket has a strong affinity for electron-withdrawing functional groups and contributes to stable polar interactions between enzyme and ligand. Furthermore, enhanced intracellular killing efficacy (8 µg/mL) of TSA-5 against Mycobacterium aurum in infected macrophages is noted in comparison to moderate in vitro antimycobacterial efficacy (64 µg/mL) against M. aurum. TSA-5 also demonstrates whole-cell efflux pump inhibitory activity against Mycobacterium smegmatis. Identification of TSA-5 by focusing on the modular MbtB_Cy domain paves the way for accelerating novel anti-TB antibiotic discoveries.


Assuntos
Antibacterianos , Mycobacterium tuberculosis , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Simulação de Acoplamento Molecular , Ferro/metabolismo , Mycobacterium smegmatis , Antituberculosos/química
4.
Pharmacol Res ; 172: 105776, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450319

RESUMO

Obesity and associated metabolic disorders are heading up with an alarming rate in developing nations. One of highly sought solution for metabolic disorders is to identify natural molecule with an ability to reduce obesity and increase insulin sensitivity. Coelogin (CLN) is a phenanthrene derivative isolated from the ethanolic extract of Coelogyne cristata. In our constant efforts to identify novel anti-dyslipidemic and anti-adipogenic compounds using CFPMA (common feature pharmacophore model using known anti-adipogenic compounds) model, predicted possible anti-adipogenic activity of CLN. In vitro results showed significant inhibition of adipogenesis in 3T3-L1 and C3H10T1/2 cell by CLN. It arrests the cell cycle in G1 phase of interphase and inhibits mitotic clonal expansion to regulate adipogenesis. CLN elicits insulin sensitizing effect in mature adipocytes. During extracellular flux assessment studies, it increases oxidative respiration and energy expenditure in adipocytes. In vivo, CLN reversed HFD-induced dyslipidemia as well as insulin resistance in C57BL/6 mice. It promoted the expression of genes involved in improved mitochondrial function and fatty acid oxidation in eWAT. CLN restored energy expenditure and increased the capacity of energy utilization in HFD fed mice. Taken together, the study indicated beneficial effects of CLN in combating obesity-associated metabolic complications.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Obesidade/tratamento farmacológico , Fenantrenos/uso terapêutico , Piranos/uso terapêutico , Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glicerol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/metabolismo , Oxigênio/metabolismo , Fenantrenos/farmacologia , Piranos/farmacologia
5.
Cell Biol Int ; 44(12): 2553-2569, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32902904

RESUMO

Triple-negative breast cancers (TNBC) are highly aggressive and drug resistant accounting for majority of cases with poor outcome. Purified natural compounds display substantial anticancer activity with reduced cytotoxicity providing a new avenue to combat TNBC. Chebulinic acid (CA), a polyphenol derived from the fruits of various medicinal plants has potent anticancer activity. Here, we demonstrate that CA shows significant cytotoxicity against triple negative MDA-MB-231 cells. CA exhibited cytotoxicity to MDA-MB-231 cells in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Further, CA mitigated MDA-MB-231 cells viability and proliferation as shown by reduced live cell count, crystal violet staining, colony formation assay, soft agar assay and cell cycle analysis. Wound healing assay and trans-well migration assay demonstrated that CA significantly inhibited migration of MDA-MB-231 cells. Also reduced MMP9 expression was observed in CA-treated cells by gelatin zymography. CA negatively regulated mesenchymal characteristics of MDA-MB-231 cells demonstrated by F-actin staining and reduced expression of N-cadherin by confocal microscopy and western blot analysis. Annexin V/propidium iodide (PI) and active caspase-3 staining showed that CA was able to induce apoptosis in MDA-MB-231 cells but did not activate caspase-3. Two-dimensional gel electrophoresis based proteomic analysis demonstrated that CA regulated proteins belonging to the oxidative stress pathway, apoptotic pathway and proteins with antiproliferative activity. Western blot analysis analysis revealed that CA negatively regulated superoxide dismutase 1 (SOD1) and enhanced oxidative stress in MDA-MB-231 cells. SOD1 in-gel activity assay also showed reduced SOD1 activity upon CA treatment. Overexpression studies with GFP-LC3 and tandem tagged RFP-GFP-LC-3 also demonstrated enhanced autophagy upon CA treatment.


Assuntos
Taninos Hidrolisáveis/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose/genética , Autofagia/genética , Morte Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Taninos Hidrolisáveis/farmacologia , Metástase Neoplásica/genética , Proteômica/métodos , Superóxido Dismutase-1/metabolismo , Neoplasias de Mama Triplo Negativas/genética
6.
Rapid Commun Mass Spectrom ; 31(6): 572-582, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28063187

RESUMO

RATIONALE: Silodosin (SDN) is a novel α1 -adrenoceptor antagonist in the treatment of benign prostatic hyperplasia (BPH). The presence of degradation products in a drug affects not only the quality, but also the safety and efficacy of drug formulation. Thus, it is essential to develop an efficient analytical method which could be useful to selectively separate, identify and characterise of all possible degradation products of SDN which is mandatory in drug development processes. METHODS: SDN was subjected to forced degradation under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions. Separation of the drug and degradation products was achieved by a liquid chromatography (LC) method using an Acquity UPLC® BEH C18 (2.1 × 100 mm, 1.7 µm; Waters) column with mobile phase consisting of 0.1% formic acid (FA) in water (A) and 0.1% FA in acetonitrile (ACN) and methanol (MeOH) (1:1) (B) as organic modifier at a flow rate of 0.15 mL min-1 in gradient elution mode. Identification and characterization of the degradation products was performed by mass spectrometry methods using an LTQ-Orbitrap mass spectrometer. RESULTS: A total of five degradation products (DP1 to DP5) were formed under various stress conditions and their structures were proposed with the help of tandem mass spectrometry (MS/MS) experiments and high-resolution mass spectral data. A common degradation product (DP1) was observed under acidic and basic degradation conditions. DP2 was observed under acidic, DP4 and DP5 were observed under basic hydrolytic conditions, whereas DP3 was observed under oxidative conditions. CONCLUSIONS: SDN was found to be labile under hydrolytic and oxidative conditions. The structures of all the degradation products were proposed. The most rational mechanisms for the formation of the degradation products under different stress conditions have been established. The proposed method can be effectively used to carry out the determination and detection of SDN and its degradation products. Copyright © 2017 John Wiley & Sons, Ltd.

7.
Phytother Res ; 31(12): 1849-1857, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28921713

RESUMO

Chebulinic acid, an ellagitannin found in the fruits of Terminalia chebula, has been extensively used in traditional Indian system of medicine. It has shown to have various biological activities including antitumor activity. The present study aims to investigate the cytotoxic potential of chebulinic acid in human myeloid leukemia cells. Interestingly, chebulinic acid caused apoptosis of acute promyelocytic leukemia HL-60 and NB4 cells but not K562 cells. In vitro antitumor effects of chebulinic acid were investigated by using various acute myeloid leukemia cell lines. Chebulinic acid treatment to HL-60 and NB4 cells induced caspase activation, cleavage of poly(ADP-ribose) polymerase, DNA fragmentation, chromatin condensation, and changes in the mitochondrial membrane permeability. Additionally, inhibition of caspase activation drastically reduced the chebulinic acid-induced apoptosis of acute promyelocytic leukemia cells. Our data also demonstrate that chebulinic acid-induced apoptosis in HL-60 and NB4 cells involves activation of extracellular signal-regulated kinases, which, when inhibited with ERK inhibitor PD98059, mitigates the chebulinic acid-induced apoptosis. Taken together, our findings exhibit the selective potentiation of chebulinic acid-induced apoptosis in acute promyelocytic leukemia cells. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Frutas/química , Taninos Hidrolisáveis/química , Leucemia Mieloide Aguda/tratamento farmacológico , Terminalia/química , Humanos , Leucemia Mieloide Aguda/patologia
8.
Mol Cell Biochem ; 414(1-2): 95-104, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26887316

RESUMO

It is known that 4-hydroxyisoleucine (4-HIL) from seeds of Trigonella foenum-graecum has beneficial effects on low-grade inflammation; therefore, the insulin signaling as well as the anti-inflammatory effects of 4-HIL in TNF-α-induced insulin resistance in C2C12 myotubes was studied with an aim to dissect out the mechanism(s) of the inflammation-mediated insulin resistance. TNF-α suppressed insulin-stimulated glucose transport rate and increased Ser-307 phosphorylation of insulin receptor substrate-1 (IRS-1). However, the treatment of 4-hydroxyisoleucine enhanced insulin-stimulated glucose transport rate via the activation of AMP-activated protein kinase (AMPK) in a dose-dependent manner. 4-HIL also increases the tyrosine phosphorylation of both IR-ß and IRS-1. Moreover, coimmunoprecipitation (Co-IP) of insulin receptor-ß (IR-ß) subunit with IRS-1 was found to be increased by 4-hydroxyisoleucine. Concentration of SOCS-3 protein and coimmunoprecipitation of SOCS-3 protein with both the IR-ß subunit as well as IRS-1 was found to be decreased by 4-HIL. We conclude that the 4-hydroxyisoleucine reverses the insulin resistance by the activation of AMPK and suppression of SOCS-3 coimmunoprecipitation with both the IR-ß subunit as well as IRS-1.


Assuntos
Adenilato Quinase/metabolismo , Inflamação/prevenção & controle , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Isoleucina/análogos & derivados , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Androstadienos/farmacologia , Animais , Linhagem Celular , Desoxiglucose/metabolismo , Ativação Enzimática , Transportador de Glucose Tipo 4/metabolismo , Imunoprecipitação , Isoleucina/farmacologia , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fosforilação , Fator de Necrose Tumoral alfa/farmacologia , Wortmanina
9.
Phytother Res ; 29(6): 910-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25851068

RESUMO

Azadirachta indica is well known medicinal plant mentioned in ancient herbal texts. It has been extensively used in Ayurvedic, Unani and Homoeopathic medicine and has become a luminary of modern medicine. As part of our drug discovery program we isolated azadiradione from the ethanolic extract of seeds of A. indica and evaluated for in-vivo antiulcer activity in cold restraint induced gastric ulcer model, aspirin induced gastric ulcer model, alcohol induced gastric ulcers model and pyloric ligation induced ulcer model. Azadiradione exhibited potent antiulcer activity through the inhibition of H+ K+-ATPase (proton pump) activity via its cytoprotective effect and also via its antisecretory effect. This combined effect has valuable potential in the future treatment of peptic ulceration.


Assuntos
Antiulcerosos/farmacologia , Azadirachta/química , Limoninas/farmacologia , Extratos Vegetais/farmacologia , Úlcera Gástrica/tratamento farmacológico , Animais , Antiulcerosos/isolamento & purificação , Dinoprostona/química , Modelos Animais de Doenças , Feminino , Limoninas/isolamento & purificação , Masculino , Plantas Medicinais/química , Inibidores da Bomba de Prótons/isolamento & purificação , Inibidores da Bomba de Prótons/farmacologia , Ratos , Ratos Sprague-Dawley , Sementes/química
10.
J Org Chem ; 79(9): 3821-9, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24689356

RESUMO

An unprecedented formation of a new class of 2-benzyl-3-phenyl-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazines has been discovered during the course of benzimidazole and benzothiazole synthesis, through the molecular iodine-mediated oxidative cyclization with a new C-N and S-N bond formation at ambient temperature.


Assuntos
Benzimidazóis/síntese química , Benzotiazóis/síntese química , Iodo/química , Tiadiazinas/síntese química , Benzimidazóis/química , Benzotiazóis/química , Estrutura Molecular , Tiadiazinas/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-38199059

RESUMO

Arbortristoside-A (Arbor-A) is a naturally occurring iridoid glycoside and herbal-based lead molecule with proven medicinal potential. Aiming at the development of an efficient analytical tool for the quantification of Arbor-A in pharmaceutical dosage forms, in the presented work, we developed an economical, fast, and sensitive RP-HPLC-UV method and validated the procedure as per the ICH guidelines, Q2(R1). The chromatographic separation was accomplished under the optimised experimental conditions using an HPLC system with an LC-2010 autosampler, a PDA detector, and a Phenomenex C18 column with the mobile phase composed of a 70:30 (v/v) water-acetonitrile mixture eluting isocratically at a flow rate of 1 mL/min at ambient temperature, and UV detection at 310 nm. Arbor-A showed a sharp peak at the retention time of 5.60 min and exhibited linearity (R2 = 0.9988) with LOD and LOQ of 0.50 µg/mL and 1.50 µg/mL, respectively. The accuracy of the method was 98.33-101.36 % with acceptable intra-day and inter-day precisions as well as robustness (<2% RSD). To ratify the applicability of the presented approach in emerging pharmaceuticals, a nanoformulation loaded with Arbor-A was designed and analysed utilising the provided methodology. The method has also enabled to determine the degradation kinetics of Arbor-A under stress conditions, etcetera, employing forced degradation and short term stability studies.


Assuntos
Cromatografia Líquida de Alta Pressão , Glucosídeos Iridoides , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Estabilidade de Medicamentos , Reprodutibilidade dos Testes , Preparações Farmacêuticas
12.
Int Immunopharmacol ; 115: 109649, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603357

RESUMO

Molecular therapy refers to targeted therapies based on molecules which have been intelligently directed towards specific biomolecular structures and include small molecule drugs, monoclonal antibodies, proteins and peptides, DNA or RNA-based strategies, targeted chemotherapy and nanomedicines. Molecular therapy is emerging as the most effective strategy to combat the present challenges of life-threatening visceral leishmaniasis, where the successful human vaccine is currently unavailable. Moreover, current chemotherapy-based strategies are associated with the issues of ineffective targeting, unavoidable toxicities, invasive therapies, prolonged treatment, high treatment costs and the development of drug-resistant strains. Thus, the rational approach to antileishmanial drug development primarily demands critical exploration and exploitation of biochemical differences between host and parasite biology, immunocharacteristics of parasite homing, and host-parasite interactions at the molecular/cellular level. Following this, the novel technology-based designing and development of host and/or parasite-targeted therapeutics having leishmanicidal and immunomodulatory activity is utmost essential to improve treatment efficacy. Thus, the present review is focused on immunological and molecular checkpoint targets in host-pathogen interaction, and molecular therapeutic prospects for Leishmania intervention, and the challenges ahead.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose Visceral , Leishmaniose , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose Visceral/parasitologia , Desenvolvimento de Medicamentos , Resultado do Tratamento , Leishmaniose/tratamento farmacológico
13.
Nat Prod Res ; : 1-7, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37367436

RESUMO

Aiming at confirming the chemical structure, herein, we report the crystal structure of Arbortristoside-A, isolated from the seeds of Nyctanthes arbor-tristis Linn. and investigated by single crystal X-ray crystallographic analysis. The unambiguously established structure of Arbortristoside-A not only addresses previously reported structural flaws but also encourages its chemical, computational, and physiological studies as a lead drug candidate of pharmaceutical significance.

14.
Bioanalysis ; 15(13): 711-725, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37354099

RESUMO

Aim: To study the preclinical pharmacokinetics of 4-hydroxy isoleucine (4-HIL) targeted for polycystic ovary syndrome. Methodology: The quantitative bioanalysis of 4-HIL in different biological matrices in female Sprage-Dawley rats using LC-MS/MS. Results: At 50 mg/kg, 4-HIL had 56.8% absolute oral bioavailability. It was quickly absorbed and distributed in various tissues in order of small intestine > kidney > ovary > spleen > lung > liver > heart > brain after oral administration. Moreover, 11.07% of 4-HIL was recovered in urine and feces within 72 h. Conclusion: 4-HIL levels in vital organs were found safe, as per tissue distribution results. Hence, 4-HIL could be used as promising therapeutics for management of polycystic ovary syndrome.


Assuntos
Isoleucina , Síndrome do Ovário Policístico , Ratos , Feminino , Animais , Humanos , Cromatografia Líquida , Ratos Sprague-Dawley , Síndrome do Ovário Policístico/tratamento farmacológico , Espectrometria de Massas em Tandem/métodos , Administração Oral
15.
Eur J Med Chem ; 262: 115895, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883898

RESUMO

Obesity is a chronic disorder with multifactorial etiology, including genetic, medical, dietary and other environmental factors. Both natural and synthetic heterocyclic compounds, especially oxazoles, represent an interesting group of compounds and have gained much attention due to their remarkable biological activities. Therefore, a library of 3,3-DMAH (3,3-dimethylallylhalfordinol) inspired N-alkylated oxazole bromide salts with varied substitutions were prepared and screened using the 3T3-L1 model of adipogenesis and HFD-induced obesity model in Syrian golden hamsters. Several compounds in the synthesized series displayed remarkable anti-adipogenic potential on the differentiation of 3T3-L1 preadipocytes. Compound 19e, displayed the most potent activity of all and selected for further studies. Compound 19e inhibited mitotic clonal expansion of 3T3-L1 cells and enhanced the mitochondrial oxygen consumption rate of the cells during early phase of differentiation via AMPK activation. 19e also improved the dyslipidaemia in high calorie diet fed Syrian Golden Hamsters. Therefore, compound 19e can serve as a potential lead against adipogenesis and dyslipidaemia models and could be further investigated to affirm its significance as a drug candidate.


Assuntos
Adipogenia , Dislipidemias , Cricetinae , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Mesocricetus , Adipócitos/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Células 3T3-L1
16.
Front Pharmacol ; 14: 1073327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37050897

RESUMO

Introduction: Diabetes mellitus (DM) is a metabolic disorder that results in glucose accumulation in the blood, accompanied by the production of advanced glycation end products (AGEs) through glycation of cellular proteins. These AGEs interfere with insulin signaling and prevent GLUT4 membrane translocation, thereby promoting the accumulation of more glucose in the blood and causing post-diabetic complications. Methods: In this study, we examine the anti-diabetic potential of Lyonia ovalifolia (Wall.) Drude, a well-known ethnomedicinal plant of the Indian Himalayas. Considering its various medicinal properties, we analyzed its ethanolic extract and various solvent fractions for in vitro antiglycation activity and antidiabetic potential, i.e., stimulation of GLUT4 translocation. Result and Discussions: The results showed that the extract and fractions exhibited increased antiglycation activity and an increased level of GLUT4 translocation. Analysis of a further 12 bioactive compounds of ethanolic extract, identified through LC-ESI-QTOF-MS/MS, revealed the presence of three new compounds: leucothol B, rhodoterpenoids A, and leucothol A. Moreover, we performed molecular docking of identified compounds against key proteins of diabetes mellitus: the sirtuin family of NAD (+)-dependent protein deacetylases 6 (SIRT6), aldose reductase (AR), and tyrosine kinase (TK). The results showed that flavonoid luteolin showed the best binding affinity ((-12.3 kcal/mol), followed by eriodictyol, astilbin, and syringaresinol. An ADMET study showed that luteolin, eriodictyol, astilbin, and syringaresinol may be promising drug candidates belonging to the flavonoid class of compounds, with no harmful effects and complying with all the drug-likeness guidelines. Furthermore, molecular dynamics (MD) simulations on a 50 ns timescale revealed that AR protein was most stable with luteolin throughout the simulation period. Therefore, this study reveals for the first time that L. ovalifolia plays an important role in insulin homeostasis, as shown in in vitro and in silico studies.

17.
Curr Drug Metab ; 24(8): 587-598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37592800

RESUMO

BACKGROUND: Chebulinic acid (CA) is an active constituent of Terminalia chebula fruits with therapeutic potential against multiple metabolic diseases, including dementia, benign prostate hyperplasia, and osteoporosis. OBJECTIVE: The present work intends to explore the preclinical pharmacokinetics, including the absolute bioavailability of CA and its influence on the gene expression of cytochrome P450 enzymes in the liver. METHODS: Quantifying CA and probe drugs in vitro samples and preclinical serum samples of male SD rats were performed using LC-MS/MS. The influence of CA on the hepatic CYPs and their gene expression was analyzed in rat liver by quantitative real-time polymerase chain reaction. RESULTS: The plasma protein binding was found to be 84.81 ± 7.70 and 96.34 ± 3.12, blood-to-plasma ratio of 0.62 ± 0.16 and 0.80 ± 0.23 at 1 µM and 10 µM concentrations, respectively. Again, the absolute oral bioavailability of CA at 100 mg/kg was found to be 37.56 ± 7.3%. The in-vivo pharmacokinetic profile of probe drugs revealed CA to have significant inducing effects on CYP1A2, 2C11, 2D2, and 2E1 after 14 days, which correlates to both in-vitro rat microsomal data and gene expression results. CONCLUSION: Altogether, pharmacokinetic parameters reveal CA to have an affinity to distribute across different extravascular tissues and induce rat liver CYP enzymes.

18.
Eur J Nutr ; 51(7): 893-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22610671

RESUMO

PURPOSE: To determine the effect of 4-Hydroxyisoleucine (4-HIL), an unusual amino acid isolated from the seeds of Trigonella foenum-graecum, on glucose uptake and the translocation of glucose transporter 4 (GLUT4) to plasma membrane in skeletal muscle cells and to investigate the underlying mechanisms of action. METHODS: Rat skeletal muscle cells (L6-GLUT4myc) were treated with 4-HIL, and the effect on glucose uptake was determined by measuring the incorporation of radio-labeled 2-deoxy-[(3)H]-D-glucose (2-DG) into the cell. Translocation of GLUT4myc to plasma membrane was measured by an antibody-coupled colorimetric assay. RESULTS: The prolonged exposure (16 h) of L6-GLUT4myc myotubes to 4-HIL caused a substantial increase in the 2-DG uptake and GLUT4 translocation to the cell surface, without changing the total amount of GLUT4 and GLUT1. Cycloheximide treatment reversed the effect of 4-HIL on GLUT4 translocation to the basal level suggesting the requirement of new protein synthesis. The 4-HIL-induced increase in GLUT4 translocation was completely abolished by wortmannin, and 4-HIL significantly increased the basal phosphorylation of AKT (Ser-473), but did not change the mRNA expression of AKT, IRS-1, GLUT4, and GSK3ß. CONCLUSION: Results suggest that 4-HIL stimulates glucose uptake in L6-GLUT4myc myotubes by enhancing translocation of GLUT4 to the cell surface in a PI-3-kinase/AKT-dependent mechanism.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Glucose/farmacocinética , Isoleucina/análogos & derivados , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Animais , Bovinos , Membrana Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Insulina/metabolismo , Isoleucina/farmacologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Sementes/química , Transdução de Sinais , Trigonella/química
19.
Hum Exp Toxicol ; 41: 9603271211061873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35072544

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia and insulin resistance. 4-hydroxyisoleucine (4-HIL) is a non-proteinogenic amino acid isolated from the fenugreek seeds and has enormous pharmacological activities. The present study was undertaken to investigate the antihyperglycemic effect of 4-HIL in streptozotocin (STZ)-induced diabetic rats. Moreover, its toxicity was evaluated in vitro and in vivo employing human embryonic kidney cells (HEK-293) and healthy rats, respectively. In experiment 1, STZ-induced diabetic male rats were subjected to an oral treatment of 4-HIL (100 mg/kg), while experiment 2 deals with the effects of 4-HIL on healthy male and female rats following oral administration. The treatment (experiment 1) declined the elevated blood glucose level, feed intake, and increased body weight(s). Additionally, blood glucose impairment was improved as observed by OGTT and IPGT tests. Pancreatic histopathology revealed mild changes in the 4-HIL group. Moreover, experiment 2 showed increased body weight, normal blood glucose levels (male-106.06 ± 7.49 mg/dl and female-100.06 ± 14.69 mg/dL), hematological parameters, and histopathological profiles in the treatment group. 4-HIL did not affect the viability of HEK-293 cells, and no signs of toxicity were observed in healthy rats. Therefore, the study concludes that 4-HIL has potential antihyperglycemic activity without any toxic effects.


Assuntos
Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Isoleucina/farmacologia , Isoleucina/uso terapêutico , Estreptozocina/toxicidade , Animais , Modelos Animais de Doenças , Humanos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Sprague-Dawley , Sementes/química , Trigonella/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA