RESUMO
Adoptive transfer of tumor epitope-reactive T cells has emerged as a promising strategy to control tumor growth. However, chronically-stimulated T cells expanded for adoptive cell transfer are susceptible to cell death in an oxidative tumor microenvironment. Because oxidation of cell-surface thiols also alters protein functionality, we hypothesized that increasing the levels of thioredoxin (Trx), an antioxidant molecule facilitating reduction of proteins through cysteine thiol-disulfide exchange, in T cells will promote their sustained antitumor function. Using pre-melanosome protein (Pmel)-Trx1 transgenic mouse-derived splenic T cells, flow cytometry, and gene expression analysis, we observed here that higher Trx expression inversely correlated with reactive oxygen species and susceptibility to T-cell receptor restimulation or oxidation-mediated cell death. These Trx1-overexpressing T cells exhibited a cluster of differentiation 62Lhi (CD62Lhi) central memory-like phenotype with reduced glucose uptake (2-NBDGlo) and decreased effector function (interferon γlo). Furthermore, culturing tumor-reactive T cells in the presence of recombinant Trx increased the dependence of T cells on mitochondrial metabolism and improved tumor control. We conclude that strategies for increasing the antioxidant capacity of antitumor T cells modulate their immunometabolic phenotype leading to improved immunotherapeutic control of established tumors.
Assuntos
Linfócitos T/metabolismo , Tiorredoxinas/metabolismo , Animais , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Transportador de Glucose Tipo 1/metabolismo , Selectina L/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Linfócitos T/citologia , Linfócitos T/imunologia , Tiorredoxinas/genética , Microambiente Tumoral , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/metabolismoRESUMO
BACKGROUND: We previously reported that secreted frizzled-related protein-2 (SFRP2) is expressed in a variety of tumors, including sarcoma and breast carcinoma, and stimulates angiogenesis and inhibits tumor apoptosis. Therefore, we hypothesized that a humanized SFRP2 monoclonal antibody (hSFRP2 mAb) would inhibit tumor growth. METHODS: The lead hSFRP2 antibody was tested against a cohort of 22 healthy donors using a time course T-cell assay to determine the relative risk of immunogenicity. To determine hSFRP2 mAb efficacy, nude mice were subcutaneously injected with SVR angiosarcoma cells and treated with hSFRP2 mAb 4 mg/kg intravenously every 3 days for 3 weeks. We then injected Hs578T triple-negative breast cells into the mammary fat pad of nude mice and treated for 40 days. Control mice received an immunoglobulin (Ig) G1 control. The SVR and Hs578T tumors were then stained using a TUNEL assay to detect apoptosis. RESULTS: Immunogenicity testing of hSFRP2 mAb did not induce proliferative responses using a simulation index (SI) ≥ 2.0 (p < 0.05) threshold in any of the healthy donors. SVR angiosarcoma tumor growth was inhibited in vivo, evidenced by significant tumor volume reduction in the hSFRP2 mAb-treated group, compared with controls (n = 10, p < 0.001). Likewise, Hs578T triple-negative breast tumors were smaller in the hSFRP2 mAb-treated group compared with controls (n = 10, p < 0.001). The hSFRP2 mAb treatment correlated with an increase in tumor cell apoptosis (n = 11, p < 0.05). Importantly, hSFRP2 mAb treatment was not associated with any weight loss or lethargy. CONCLUSION: We present a novel hSFRP2 mAb with therapeutic potential in breast cancer and sarcoma that has no effect on immunogenicity.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Apoptose , Hemangiossarcoma/tratamento farmacológico , Proteínas de Membrana/imunologia , Neovascularização Patológica/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/biossíntese , Proliferação de Células , Feminino , Hemangiossarcoma/metabolismo , Hemangiossarcoma/patologia , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Secreted frizzled-related protein 2 (SFRP2) is a pro-angiogenic factor expressed in the vasculature of a wide variety of human tumors, and modulates angiogenesis via the calcineurin-dependent nuclear factor of activated T-cells cytoplasmic 3 (NFATc3) pathway in endothelial cells. However, until now, SFRP2 receptor for this pathway was unknown. In the present study, we first used amino acid alignments and molecular modeling to demonstrate that SFRP2 interaction with frizzled-5 (FZD5) is typical of Wnt/FZD family members. To confirm this interaction, we performed co-immunofluorescence, co-immunoprecipitation, and ELISA binding assays, which demonstrated SFRP2/FZD5 binding. Functional knock-down studies further revealed that FZD5 is necessary for SFRP2-induced tube formation and intracellular calcium flux in endothelial cells. Using protein analysis on endothelial cell nuclear extracts, we also discovered that FZD5 is required for SFRP2-induced activation of NFATc3. Our novel findings reveal that FZD5 is a receptor for SFRP2 and mediates SFRP2-induced angiogenesis via calcineurin/NFATc3 pathway in endothelial cells.
Assuntos
Receptores Frizzled/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Animais , Neoplasias da Mama/patologia , Cálcio/metabolismo , Linhagem Celular , Movimento Celular , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Espaço Intracelular/metabolismo , Camundongos , Ligação Proteica , Homologia Estrutural de ProteínaRESUMO
The HLX gene encoding a diverged homeobox transcription factor has been found to be up-regulated by vascular endothelial growth factor-A (VEGF-A) in endothelial cells. We have now investigated the gene repertoire induced by HLX and its potential biologic function. HLX strongly increased the transcripts for several repulsive cell-guidance proteins including UNC5B, plexin-A1, and semaphorin-3G. In addition, genes for transcriptional repressors such as HES-1 were up-regulated. In line with these findings, adenoviral overexpression of HLX inhibited endothelial cell migration, sprouting, and vessel formation in vitro and in vivo, whereas proliferation was unaffected. This inhibition of sprouting was caused to a significant part by HLX-mediated up-regulation of UNC5B as shown by short hairpin RNA (shRNA)-mediated down-modulation of the respective mRNA. VEGF-A stimulation of endothelial cells induced elevated levels of HLX over longer time periods resulting in especially high up-regulation of UNC5B mRNA as well as an increase in cells displaying UNC5B at their surface. However, induction of HLX was strongly reduced and UNC5B up-regulation completely abrogated when cells were exposed to hypoxic conditions. These data suggest that HLX may function to balance attractive with repulsive vessel guidance by up-regulating UNC5B and to down-modulate sprouting under normoxic conditions.
Assuntos
Movimento Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Neovascularização Fisiológica , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Hipóxia Celular/genética , Movimento Celular/genética , Proliferação de Células , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos SCID , Receptores de Netrina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Transplante Heterólogo , Regulação para Cima/genéticaRESUMO
Pancreatic adenocarcinoma (PDAC) is one of the deadliest cancers, with five-year survival rates of 9%. We hypothesized that secreted frizzled-related protein 2 (SFRP2) may influence stromal growth in pancreatic cancer, since it increases fibrosis and collagen production in non-neoplastic pathologies. We assessed SFRP2 value as a biomarker and assessed its function in PDAC. SFRP2 gene expression in patients with PDAC was analyzed using TCGA data. Disease free survival (DFS) was analyzed using Kaplan Meier test. The effect of KRAS inhibition on SFRP2 expression in PDAC cells was assessed. The associations of stromal content with SFPR2 mRNA and protein with fibrosis were analyzed. The role of SFRP2 in mesenchymal transformation was assessed by western blot in fibroblasts. Of all cancers in TCGA, SFRP2 levels were highest in PDAC, and higher in PDAC than normal tissues (n= 234, p= 0.0003). High SFRP2 levels correlated with decreased DFS (p= 0.0097). KRAS inhibition reduced SFRP2 levels. Spearman correlation was 0.81 between stromal RNA and SFRP2 in human PDAC, and 0.75 between fibrosis and SFRP2 levels in PDAC tumors. SFRP2-treated fibroblasts displayed mesenchymal characteristics. SFRP2 is prognostic for PDAC survival, regulated by KRAS, and associated with PDAC fibrosis.
Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
Secreted frizzled-related protein 2 (SFRP2) promotes the migration/invasion of metastatic osteosarcoma (OS) cells and tube formation by endothelial cells. However, its function on T-cells is unknown. We hypothesized that blocking SFRP2 with a humanized monoclonal antibody (hSFRP2 mAb) can restore immunity by reducing CD38 and PD-1 levels, ultimately overcoming resistance to PD-1 inhibitors. Treating two metastatic murine OS cell lines in vivo, RF420 and RF577, with hSFRP2 mAb alone led to a significant reduction in the number of lung metastases, compared to IgG1 control treatment. While PD-1 mAb alone had minimal effect, hSFRP2 mAb combination with PD-1 mAb had an additive antimetastatic effect. This effect was accompanied by lower SFRP2 levels in serum, lower CD38 levels in tumor-infiltrating lymphocytes and T-cells, and lower PD-1 levels in T-cells. In vitro data confirmed that SFRP2 promotes NFATc3, CD38 and PD-1 expression in T-cells, while hSFRP2 mAb treatment counteracts these effects and increases NAD+ levels. hSFRP2 mAb treatment further rescued the suppression of T-cell proliferation by tumor cells in a co-culture model. Finally, hSFRP2 mAb induced apoptosis in RF420 and RF577 OS cells but not in T-cells. Thus, hSFRP2 mAb therapy could potentially overcome PD-1 inhibitor resistance in metastatic osteosarcoma.
RESUMO
OBJECTIVE: Innate and acquired resistance is the principle factor limiting the efficacy of tyrosine kinase inhibitors in lung cancer. We have observed a dramatic upregulation of the cell surface co-receptor neuropilin-2b in lung cancers clinically treated with tyrosine kinase inhibitors correlating with acquired resistance. We hypothesize that neuropilin-2b plays a functional role in acquired tyrosine kinase inhibitor resistance. METHODS: Non-small cell lung cancer proliferation and survival were determined during chronic tyrosine kinase inhibitor exposure in the presence or absence of neuropilin-2b knock-down. Interactions of neuropilin-2a and neuropilin-2b isoforms with PTEN and GSK3ß were assessed by immunoprecipitation. Neuropilin-2a and neuropilin-2b mutants deleted for their cytoplasmic domains were used to identify regions responsible for neuropilin-2b-GSK3ß interaction. Because GSK3ß is known to phosphorylate and degrade PTEN, phospho-PTEN and total PTEN levels were assessed after transfection of neuropilin-2a and neuropilin-2b wild-type and mutant constructs. RESULTS: Non-small cell lung cancer cells chronically treated with gefitinib or osimertinib developed drug resistance and exhibited logarithmic growth in the presence of endothelial growth factor receptor tyrosine kinase inhibitors. However, neuropilin-2b knockdown cells remained sensitive to gefitinib. Likewise, neuropilin-2b knockdown suppressed and neuropilin-2a knockdown enhanced cellular migration. Acquired drug resistance and cell migration correlated with neuropilin-2b-dependent AKT activation with the intermediate step of GSK3ß-dependent PTEN degradation. A specific binding site for GSK3ß on the cytoplasmic domain of neuropilin-2b was identified with truncated protein constructs and computer modeling. CONCLUSIONS: Neuropilin-2b facilitates non-small cell lung cancer resistance to tyrosine kinase inhibitors, and this biological effect relates to AKT activation. Neuropilin-2b GSK3ß interactions appear to be essential for PTEN degradation and AKT activation in lung cancer cells. Disruption of the neuropilin-2b GSK3ß interaction may represent a novel treatment strategy to preserve sensitivity to tyrosine kinase inhibitors in non-small cell lung cancer.
Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Gefitinibe/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neuropilina-2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células A549 , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Neuropilina-2/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Loss of SEMA3F occurs frequently in lung cancer and correlates with advanced stage of disease. We previously reported that SEMA3F blocked tumor formation by H157 lung cancer cells in a rat orthotopic model. This was associated with loss of activated alpha(V)beta(3) integrin, impaired cell adhesion to extracellular matrix components, and down-regulation of phospho-extracellular signal-regulated kinase 1/2 (ERK1/2). These results suggested that SEMA3F might interfere with integrin outside-in signaling. In the present report, we found that SEMA3F decreased adhesion to vitronectin, whereas integrin-linked kinase (ILK) kinase activity was down-regulated in SEMA3F-expressing H157 cells. Exposure to SEMA3F-conditioned medium led to diminution of phospho-ERK1/2 in four of eight lung cancer cell lines, and ILK silencing by small interfering RNA led to similar loss of phospho-ERK1/2 in H157 cells. Moreover, SEMA3F expression (with constitutive and inducible systems) also reduced AKT and signal transducer and activator of transcription 3 (STAT3) phosphorylation independently of ILK-ERK1/2. These signaling changes extended downstream to hypoxia-inducible factor-1alpha (HIF-1alpha) protein and vascular endothelial growth factor (VEGF) mRNA levels, which were both reduced in three of four SEMA3F-transfected cell lines. Mechanistically, the effects on HIF-1alpha were consistent with inhibition of its AKT-driven protein translation initiation, with no effect on HIF-1alpha mRNA level or protein degradation. Furthermore, when H157 cells were injected s.c. in nude mice, tumors derived from SEMA3F-expressing cells showed lower microvessel density and tumor growth. These results show that SEMA3F negatively affects ILK-ERK1/2 and AKT-STAT3 signaling, along with inhibition of HIF-1alpha and VEGF. These changes would be anticipated to contribute significantly to the observed antitumor activity of SEMA3F.
Assuntos
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Linhagem Celular Tumoral , Feminino , Terapia Genética/métodos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Transfecção , Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
TRAF3-interacting protein 3 (TRAF3IP3) is expressed in the immune system and participates in cell maturation, tissue development, and immune response. In a previous study, we reported that TRAF3IP3 levels were substantially increased in the vasculature of breast cancer tissues, suggesting a proangiogenic role. In this study, we investigated TRAF3IP3 tumorigenic function. TRAF3IP3 protein was present in several cancer cell lines, with highest levels in melanoma. In addition, tumor microarray analysis on 23 primary melanoma and nine positive lymph nodes revealed that 70% of human primary melanoma and 66% of lymph node metastases were positive for TRAF3IP3. Importantly, TRAF3IP3 downregulation correlated with an 83% reduction of tumor growth in a subcutaneous xenograft mouse model (n=10, P=0.005). Immunohistochemistry analysis of the tumors revealed that TRAF3IP3-shRNA tumors had increased apoptosis (n=4, P<0.01) and reduced microvascular density (n=4, P<0.002). In addition, TRAF3IP3 downregulation in malignant endothelial cells reduced tube formation in a Matrigel tube formation assay. In melanoma cells, decreased levels of TRAF3IP3 were also associated with reduced viability (n=4, P=0.03) and proliferation (n=3, P=0.03), together with increased sensitivity to ultraviolet-induced apoptosis (n=4, P=0.0004). Furthermore, TRAF3IP3 downregulation correlated with increased amounts of interferon-γ. Interferon-γ inhibits tumor growth and angiogenesis, thus suggesting a new pathway for TRAF3IP3 in cancer. Collectively, the association of TRAF3IP3 with malignant properties of melanoma suggest a clinical potential for targeted therapy.
Assuntos
Melanoma/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Xenoenxertos , Imuno-Histoquímica , Interferon gama/metabolismo , Masculino , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Análise Serial de Tecidos , TransfecçãoRESUMO
Semaphorins, a family of genes encoding guidance molecules in the nervous system, influence a variety of cellular mechanisms including migration, proliferation and cytoskeleton reorganization. Interestingly, many members are expressed throughout lymphoid tissues and by different immune cells like lymphocytes, NK, monocytes and dendritic cells. Besides, the array of functions semaphorins usually regulate during organogenesis coincide with several key events required for the initiation as well as the regulation of the host immune response. Thus, it is not surprising if a substantial number of them modulates immune processes such as the establishment of the immunological synapse, differentiation to effector and helper cells, clonal expansion, migration and phagocytosis. For this purpose, immune semaphorins can signal via their canonical plexin receptors but also possibly by unique discrete cell surface proteins or associations thereof expressed by, and critical to, leukocytes. A growing list of semaphorins, receptors or related molecules keep being reported in the immune system, and display nonredundant roles at controlling its integrity and efficacy.
Assuntos
Antígenos CD/fisiologia , Semaforinas/fisiologia , Transdução de Sinais/imunologia , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos CD/metabolismo , Humanos , Modelos Imunológicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Semaforinas/biossíntese , Semaforinas/genética , Semaforinas/metabolismoRESUMO
Neuropilins (NRP1 and NRP2) are co-receptors for heparin-binding growth factors and class 3 semaphorins. Different isoforms of NRP1 and NRP2 are produced by alternative splicing. We found that in non-small cell lung cancer (NSCLC) cell lines, transforming growth factor-ß (TGFß) signaling preferentially increased the abundance of NRP2b. NRP2b and NRP2a differ only in their carboxyl-terminal regions. Although the presence of NRP2b inhibited cultured cell proliferation and primary tumor growth, NRP2b enhanced cellular migration, invasion into Matrigel, and tumorsphere formation in cultured cells in response to TGFß signaling and promoted metastasis in xenograft mouse models. These effects of overexpressed NRP2b contrast with the effects of overexpressed NRP2a. Hepatocyte growth factor (HGF)-induced phosphorylation of the kinase AKT was specifically promoted by NRP2b, whereas inhibiting the HGF receptor MET attenuated NRP2b-dependent cell migration. Unlike NRP2a, NRP2b did not bind the PDZ domain scaffolding protein GAIP carboxyl terminus-interacting protein (GIPC1) and only weakly recruited phosphatase and tensin homolog (PTEN), potentially explaining the difference between NRP2b-mediated and NRP2a-mediated effects. Analysis of NSCLC patient tumors showed that NRP2b abundance correlated with that of the immune cell checkpoint receptor ligand PD-L1 as well as with epithelial-to-mesenchymal transition (EMT) phenotypes in the tumors, acquired resistance to epidermal growth factor receptor (EGFR) inhibitors, disease progression, and poor survival in patients. NRP2b knockdown attenuated the acquisition of resistance to the EGFR inhibitor gefitinib in cultured NSCLC cells. Thus, in NSCLC, NRP2b contributed to the oncogenic response to TGFß and correlated with tumor progression in patients.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/genética , Neuropilina-2/genética , Fator de Crescimento Transformador beta/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neuropilina-2/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Análise de Sobrevida , Transplante HeterólogoRESUMO
Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-ß/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Proteínas de Homeodomínio/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Antineoplásicos/farmacologia , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mutação , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Homeobox 1 de Ligação a E-box em Dedo de ZincoRESUMO
Previously, we demonstrated that loss of SEMA3F, a secreted semaphorin encoded in 3p21.3, is associated with higher stages in lung cancer and primary tumor cells studied with anti-vascular endothelial growth factor (VEGF) and SEMA3F antibodies. In vitro, SEMA3F inhibits cell spreading; this activity is opposed by VEGF. These results suggest that VEGF and SEMA3F compete for binding to their common neuropilin receptor. In the present report, we investigated the attractive/repulsive effects of SEMA3F on cell migration when cells were grown in a three-dimensional system and exposed to a SEMA3F gradient. In addition, we adapted the neurobiologic stripe assay to analyze the migration of tumor cells in response to SEMA3F. In the motile breast cancer cell line C100, which expresses both neuropilin-1 (NRP1) and neuropilin-2 (NRP2) receptors, SEMA3F had a repulsive effect, which was blocked by anti-NRP2 antibody. In less motile MCF7 cells, which express only NRP1, SEMA3F inhibited cell contacts with loss of membrane-associated E-cadherin and beta-catenin without motility induction. Cell spreading and proliferation were reduced. These results support the concept that in a first step during tumorigenesis, normal tissues expressing SEMA3F would try to prevent tumor cells from spreading and attaching to the stroma for further implantation.
Assuntos
Neoplasias da Mama/patologia , Caderinas/química , Adesão Celular , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Feminino , Humanos , Rim/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Transativadores/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta CateninaRESUMO
Loss of the 3p21.3-encoded semaphorins, SEMA3B and SEMA3F, is implicated in lung cancer development. Although both antagonize VEGF binding/response to neuropilin (NRP) receptors, in lung cancer lines, SEMA3F is predominantly expressed and preferentially utilizes NRP2. In lung cancer patients, SEMA3F loss correlates with advanced disease and increased VEGF binding to tumor cells. In cell lines, VEGF enhances adhesion and migration in an integrin-dependent manner, and exogenous SEMA3F causes cells to round and lose extracellular contacts. Using retroviral infections, we established stable SEMA3F transfectants in two NSCLC cell lines, NCI-H157 and NCI-H460. When orthotopically injected into nude rats, both control lines caused lethal tumors in all recipients. In contrast, all animals receiving H157-SEMA3F cells, survived to 100 days, whereas all H157 controls succumbed. In H460 cells, which express NRP1 but not NRP2, SEMA3F did not prolong survival. This antitumor effect in H157 cells was associated with loss of activated alpha(v)beta(3) integrin and adhesion to extracellular matrix components. In addition, H157-SEMA3F cells, and parental H157 cells exposed to SEMA3F-conditioned medium, showed loss of p42/p44 MAPK phosphorylation. Thus, in this in vivo lung cancer model, SEMA3F has potent antitumor effects, which may impinge on activated integrin and MAPK signaling.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Pulmão/patologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Meios de Cultivo Condicionados/farmacologia , Primers do DNA/química , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Humanos , Integrina alfaVbeta3/metabolismo , Integrinas/metabolismo , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Metástase Neoplásica , Transplante de Neoplasias , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Ratos , Ratos Nus , Transdução de Sinais , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Semaphorins, first described as axon guidance molecules, play an essential role in neural development, angiogenesis and immunological response. In 1996, two semaphorin genes, SEMA3B and SEMA3F, were isolated from chromosomal region 3p21.3 believed to contain a tumor suppressor gene based on frequent loss of heterozygosity in lung and breast cancer. Since these first studies, several semaphorins have been involved in tumor progression. Some semaphorins have been proposed to have pro-tumoral properties, whereas others have been shown to have tumor suppressive activity. This review summarizes the most recent data implicating semaphorins in cancers.
Assuntos
Neoplasias/genética , Neoplasias/prevenção & controle , Semaforinas/genética , Animais , Carcinógenos , Regulação da Expressão Gênica , Genes Supressores de Tumor , Humanos , Neovascularização Patológica/prevenção & controle , Semaforinas/química , Semaforinas/metabolismo , Transdução de SinaisRESUMO
SEMA3F, isolated from a 3p21.3 deletion, has antitumor activity in transfected cells, and protein expression correlates with tumor stage and histology. In primary tumors, SEMA3F and VEGF surface staining is inversely correlated. Coupled with SEMA3F at the leading edge of motile cells, we previously suggested that both proteins competitively regulate cell motility and adhesion. We have investigated this using the breast cancer cell line, MCF7. SEMA3F inhibited cell attachment and spreading as evidenced by loss of lamellipodia extensions, membrane ruffling, and cell-cell contacts, with cells eventually rounding-up and detaching. In contrast, VEGF had opposite effects. Although SEMA3F binds NRP2 with 10-fold greater affinity than NRP1, the effects in MCF7 were mediated by NRP1. This was determined by receptor expression and blocking of anti-NRP1 antibodies. Similar effects, but through NRP2, were observed in the C100 breast cancer cell line. Although we were unable to demonstrate changes in total GTP-bound Rac1 or RhoA, we did observe changes in the localization of Rac1-GFP using time lapse microscopy. Following SEMA3F, Rac1 moved to the base of lamellipodia and - with their collapse - to the membrane. These results support the concept that SEMA3F and VEGF have antagonistic actions affecting motility in primary tumor cell.
Assuntos
Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fatores de Crescimento Endotelial/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Linfocinas/farmacologia , Semaforinas/farmacologia , Animais , Neoplasias da Mama/metabolismo , Células COS , Membrana Celular/metabolismo , Cricetinae , Primers do DNA/química , Feminino , Expressão Gênica , Glutationa Transferase/metabolismo , Humanos , Técnicas Imunoenzimáticas , Microscopia Confocal , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Reação em Cadeia da Polimerase , Pseudópodes/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
RESUMO
The epithelial to mesenchymal transition (EMT) enables epithelial cells with a migratory mesenchymal phenotype. It is activated in cancer cells and is involved in invasion, metastasis and stem-like properties. ZEB1, an E-box binding transcription factor, is a major suppressor of epithelial genes in lung cancer. In the present study, we show that in H358 non-small cell lung cancer cells, ZEB1 downregulates EpCAM (coding for an epithelial cell adhesion molecule), ESRP1 (epithelial splicing regulatory protein), ST14 (a membrane associated serine protease involved in HGF processing) and RAB25 (a small G-protein) by direct binding to these genes. Following ZEB1 induction, acetylation of histone H4 and histone H3 on lysine 9 (H3K9) and 27 (H3K27) was decreased on ZEB1 binding sites on these genes as demonstrated by chromatin immunoprecipitation. Of note, decreased H3K27 acetylation could be also detected by western blot and immunocytochemistry in ZEB1 induced cells. In lung cancers, H3K27 acetylation level was higher in the tumor compartment than in the corresponding stroma where ZEB1 was more often expressed. Since HDAC and DNA methylation inhibitors increased expression of ZEB1 target genes, targeting these epigenetic modifications would be expected to reduce metastasis.
RESUMO
The epithelial-mesenchymal transition (EMT) and its reversal, mesenchymal-epithelial transition (MET), are fundamental processes involved in tumor cell invasion and metastasis. SEMA3F is a secreted semaphorin and tumor suppressor downregulated by TGF-ß1 and ZEB1-induced EMT. Here, we report that neuropilin (NRP)-2, the high-affinity receptor for SEMA3F and a coreceptor for certain growth factors, is upregulated during TGF-ß1-driven EMT in lung cancer cells. Mechanistically, NRP2 upregulation was TßRI dependent and SMAD independent, occurring mainly at a posttranscriptional level involving increased association of mRNA with polyribosomes. Extracellular signal-regulated kinase (ERK) and AKT inhibition blocked NRP2 upregulation, whereas RNA interference-mediated attenuation of ZEB1 reduced steady-state NRP2 levels. In addition, NRP2 attenuation inhibited TGF-ß1-driven morphologic transformation, migration/invasion, ERK activation, growth suppression, and changes in gene expression. In a mouse xenograft model of lung cancer, NRP2 attenuation also inhibited locally invasive features of the tumor and reversed TGF-ß1-mediated growth inhibition. In support of these results, human lung cancer specimens with the highest NRP2 expression were predominantly E-cadherin negative. Furthermore, the presence of NRP2 staining strengthened the association of E-cadherin loss with high-grade tumors. Together, our results demonstrate that NRP2 contributes significantly to TGF-ß1-induced EMT in lung cancer.