Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 35(1): 432-459, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31899980

RESUMO

A series of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline, and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives was designed, synthesised, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiprotozoal activity with IC50 values in the µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The quinoline 1c was identified as the most potent antimalarial candidate with a ratio of cytotoxic to antiparasitic activities of 97 against the P. falciparum CQ-sensitive strain 3D7. The quinazoline 3h was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 43 on T. brucei brucei strain. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma are possible targets of this kind of nitrogen heterocyclic compounds, we have also investigated stabilisation of the Plasmodium and Trypanosoma telomeric G-quadruplexes by our best compounds through FRET melting assays.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Desenho de Fármacos , Quinolinas/química , Quinolinas/farmacologia , Antiprotozoários/síntese química , Células Hep G2 , Humanos , Leishmania donovani/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/síntese química , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos
2.
J Enzyme Inhib Med Chem ; 25(2): 216-27, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19883235

RESUMO

Cell cycle progression is dependent on the intracellular iron level, and chelators lead to iron depletion and decrease cell proliferation. This antiproliferative effect can be inhibited by exogenous iron. In this work, we present the synthesis of new synthetic calix[4]arene podands bearing alkyl acid and alkyl ester groups at the lower rim, designed as potential iron chelators. We report their effect on cell proliferation, in comparison with the new oral chelator ICL670 (4-[3,5-bis-(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid). The antiproliferative effect of these new compounds was studied in human hepatocarcinoma HepaRG cell cultures using the MTT assay. Their cytotoxicity was evaluated by extracellular LDH activity. Preliminary results indicate that their antiproliferative effect is due to their cytotoxicity. The efficiency of these compounds, comparable to that of ICL670, was independent of iron depletion. This effect remains to be further explored. Moreover, it also shows that novel substituted calix[4]arenes could open the way to new valuable medicinal chemistry scaffolding.


Assuntos
Calixarenos , Proliferação de Células/efeitos dos fármacos , Quelantes de Ferro , Ferro/farmacologia , Fenóis , Benzoatos/farmacologia , Calixarenos/química , Calixarenos/farmacologia , Linhagem Celular Tumoral , Deferasirox , Desenho de Fármacos , Humanos , Ferro/metabolismo , Quelantes de Ferro/síntese química , Quelantes de Ferro/química , Quelantes de Ferro/farmacologia , Fenóis/química , Fenóis/farmacologia , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA