Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 70(6): 1650-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25645206

RESUMO

OBJECTIVES: Pseudomonas aeruginosa is an important nosocomial pathogen that can cause a wide range of infections resulting in significant morbidity and mortality. Avibactam, a novel non-ß-lactam ß-lactamase inhibitor, is being developed in combination with ceftazidime and has the potential to be a valuable addition to the treatment options for the infectious diseases practitioner. We compared the frequency of resistance development to ceftazidime/avibactam in three P. aeruginosa strains that carried derepressed ampC alleles. METHODS: The strains were incubated in the presence of increasing concentrations of ceftazidime with a fixed concentration (4 mg/L) of avibactam to calculate the frequency of spontaneous resistance. The mutants were characterized by WGS to identify the underlying mechanism of resistance. A representative mutant protein was characterized biochemically. RESULTS: The resistance frequency was very low in all strains. The resistant variants isolated exhibited ceftazidime/avibactam MIC values that ranged from 64 to 256 mg/L. All of the mutants exhibited changes in the chromosomal ampC gene, the majority of which were deletions of various sizes in the Ω-loop region of AmpC. The mutant enzyme that carried the smallest Ω-loop deletion, which formed a part of the avibactam-binding pocket, was characterized biochemically and found to be less effectively inhibited by avibactam as well as exhibiting increased hydrolysis of ceftazidime. CONCLUSIONS: The development of high-level resistance to ceftazidime/avibactam appears to occur at low frequency, but structural modifications in AmpC can occur that impact the ability of avibactam to inhibit the enzyme and thereby protect ceftazidime from hydrolysis.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/biossíntese , Ceftazidima/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Seleção Genética , Resistência beta-Lactâmica , beta-Lactamases/biossíntese , Proteínas de Bactérias/genética , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Taxa de Mutação , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
2.
Antimicrob Agents Chemother ; 57(12): 6005-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24041904

RESUMO

Inhibitors of 4'-phosphopantetheine adenylyltransferase (PPAT) were identified through high-throughput screening of the AstraZeneca compound library. One series, cycloalkyl pyrimidines, showed inhibition of PPAT isozymes from several species, with the most potent inhibition of enzymes from Gram-positive species. Mode-of-inhibition studies with Streptococcus pneumoniae and Staphylococcus aureus PPAT demonstrated representatives of this series to be reversible inhibitors competitive with phosphopantetheine and uncompetitive with ATP, binding to the enzyme-ATP complex. The potency of this series was optimized using structure-based design, and inhibition of cell growth of Gram-positive species was achieved. Mode-of-action studies, using generation of resistant mutants with targeted sequencing as well as constructs that overexpress PPAT, demonstrated that growth suppression was due to inhibition of PPAT. An effect on bacterial burden was demonstrated in mouse lung and thigh infection models, but further optimization of dosing requirements and compound properties is needed before these compounds can be considered for progress into clinical development. These studies validated PPAT as a novel target for antibacterial therapy.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Cristalografia por Raios X , Descoberta de Drogas , Inibidores Enzimáticos/química , Feminino , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Modelos Moleculares , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Panteteína/análogos & derivados , Panteteína/química , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Bibliotecas de Moléculas Pequenas/química , Staphylococcus aureus/enzimologia , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Coxa da Perna/microbiologia
3.
Biochem J ; 446(3): 405-13, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22721802

RESUMO

GlmU is a bifunctional enzyme with acetyltransferase and uridyltransferase activities, and is essential for the biosynthesis of the bacterial cell wall. Inhibition results in a loss of cell viability. GlmU is therefore considered a potential target for novel antibacterial agents. A HTS (high-throughput screen) identified a series of aminoquinazolines with submicromolar potency against the uridyltransferase reaction. Biochemical and biophysical characterization showed competition with UTP binding. We determined the crystal structure of a representative aminoquinazoline bound to the Haemophilus influenzae isoenzyme at a resolution of 2.0 Å. The inhibitor occupies part of the UTP site, skirts the outer perimeter of the GlcNAc1-P (N-acetylglucosamine-1-phosphate) pocket and anchors a hydrophobic moiety into a lipophilic pocket. Our SAR (structure-activity relationship) analysis shows that all of these interactions are essential for inhibitory activity in this series. The crystal structure suggests that the compound would block binding of UTP and lock GlmU in an apo-enzyme-like conformation, thus interfering with its enzymatic activity. Our lead generation effort provides ample scope for further optimization of these compounds for antibacterial drug discovery.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/química , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Acetiltransferases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Parede Celular , Cristalografia por Raios X , Haemophilus influenzae/enzimologia , Haemophilus influenzae/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Nucleotidiltransferases/química , Quinazolinas/química , Quinazolinas/metabolismo , Relação Estrutura-Atividade , Uridina Trifosfato/química , Uridina Trifosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA