Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 5(2): 166-79, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8507488

RESUMO

It is becoming increasingly apparent that the diverse functions of Cdc28 during the yeast cell cycle are performed by forms of the kinase that are distinguished by their cyclin subunits. Entry into the cell cycle at START involves the Cln cyclins. S phase needs Clb5 or Clb6 B-type cyclins. Bipolar mitotic spindle formation involves Clb1-4 B-type cyclins. Much of the order and timing of the cell cycle events may involve the progressive activation of Cdc28 kinase activities associated with different cyclins, whose periodicity during the cycle is determined by both transcriptional and post-transcriptional controls.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae , Ciclo Celular , Ciclinas/genética , Saccharomyces cerevisiae/enzimologia
2.
Curr Opin Cell Biol ; 6(3): 451-9, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7917338

RESUMO

At least four different classes of cell cycle regulated gene exist in yeast: G1 cyclins and DNA synthesis genes are expressed in late G1; histone genes in S phase; genes for transcription factors, cell cycle regulators and replication initiation proteins in G2; and genes needed for cell separation as cells enter G1. Early and late G1-specific transcription is mediated by the Swi5/Ace2 and Swi4/Swi6 classes of factor, respectively. Changes in cyclin/Cdc28 kinases may be involved in all classes of regulation. Transcriptional control of cyclin genes has an important role in regulating cell cycle progression.


Assuntos
Ciclo Celular/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Transcrição Gênica/fisiologia , Animais , DNA Fúngico/análise , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Saccharomyces cerevisiae/citologia
3.
Curr Opin Cell Biol ; 9(3): 396-400, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9159073

RESUMO

Asymmetric distribution of cytoplasmic proteins and messenger RNAs has been implicated in several instances of cell differentiation. Microtubules have been suggested to direct mRNA localization in Drosophila and Xenopus oocytes but motor proteins that might transport mRNAs have not yet been identified. Recent data imply that in Drosophila, Caenorhabditis elegans and budding yeast, proteins of the actin cytoskeleton, including unconventional myosins, play active roles in the segregation of differentiation factors and mRNAs.


Assuntos
Citoesqueleto/fisiologia , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Animais , Transporte Biológico , Compartimento Celular , Drosophila melanogaster , Microtúbulos/fisiologia , Miosinas/fisiologia , Tubulina (Proteína)/fisiologia
4.
Nat Cell Biol ; 2(8): 492-9, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10934469

RESUMO

The multisubunit protein complex cohesin is required to establish cohesion between sister chromatids during S phase and to maintain it during G2 and M phases. Cohesin is essential for mitosis, and even partial defects cause very high rates of chromosome loss. In budding yeast, cohesin associates with specific sites which are distributed along the entire length of a chromosome but are more dense in the vicinity of the centromere. Real-time imaging of individual centromeres tagged with green fluorescent protein suggests that cohesin bound to centromeres is important for bipolar attachment to microtubules. This cohesin is, however, incapable of resisting the consequent force, which leads to sister centromere splitting and chromosome stretching. Meanwhile, cohesin bound to sequences flanking the centromeres prevents sister chromatids from completely unzipping and is required to pull back together sister centromeres that have already split. Cohesin therefore has a central role in generating a dynamic tension between microtubules and sister chromatid cohesion at centromeres, which lasts until chromosome segregation is finally promoted by separin-dependent cleavage of the cohesin subunit Scc1p.


Assuntos
Centrômero/metabolismo , Segregação de Cromossomos , Cromossomos Fúngicos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Anáfase , Artefatos , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona , Cromossomos Fúngicos/genética , Replicação do DNA , Proteínas Fúngicas , Deleção de Genes , Hibridização in Situ Fluorescente , Modelos Biológicos , Regiões Operadoras Genéticas/genética , Fosfoproteínas , Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Sequências de Repetição em Tandem/genética , Fatores de Tempo , Coesinas
5.
Science ; 237(4819): 1162-70, 1987 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-3306917

RESUMO

The transition from haploid to diploid in homothallic yeast involves a defined sequence of events which are regulated at the level of transcription. Transcription factors encoded by SWI genes activate the HO endonuclease gene at a precise stage in the cell cycle of mother cells. The HO endonuclease initiates a transposition event which activates genes of the opposite mating type by causing them to move away from a silencer element. The activated mating type genes then regulate genes involved in cell signaling such as the mating type-specific pheromones and their receptors. Since HO is only activated in one of the sister cells after division (the mother), adjacent cells of opposite mating type are generated which respond to each others' secreted pheromones by inducing genes involved in conjugation. This leads to the formation of a diploid in which many of the genes involved in mating and mating-type switching become repressed due to the heterozygosity of the mating-type locus. This article summarizes what is known about these transcriptional controls and discusses possible parallels in higher eukaryotes.


Assuntos
Regulação da Expressão Gênica , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Saccharomyces cerevisiae/genética , Transcrição Gênica , Cruzamentos Genéticos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
6.
Science ; 288(5470): 1379-85, 2000 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-10827941

RESUMO

In eukaryotic cells, sister DNA molecules remain physically connected from their production at S phase until their separation during anaphase. This cohesion is essential for the separation of sister chromatids to opposite poles of the cell at mitosis. It also permits chromosome segregation to take place long after duplication has been completed. Recent work has identified a multisubunit complex called cohesin that is essential for connecting sisters. Proteolytic cleavage of one of cohesin's subunits may trigger sister separation at the onset of anaphase.


Assuntos
Anáfase , Cromátides/metabolismo , Endopeptidases , Metáfase , Proteínas Nucleares/metabolismo , Complexos Ubiquitina-Proteína Ligase , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Proteínas Fúngicas , Heterocromatina/química , Heterocromatina/metabolismo , Humanos , Ligases/metabolismo , Proteínas Nucleares/química , Separase , Fuso Acromático/fisiologia , Ubiquitina-Proteína Ligases , Coesinas
7.
Science ; 282(5394): 1721-4, 1998 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-9831566

RESUMO

Proteolysis of mitotic cyclins depends on a multisubunit ubiquitin-protein ligase, the anaphase promoting complex (APC). Proteolysis commences during anaphase, persisting throughout G1 until it is terminated by cyclin-dependent kinases (CDKs) as cells enter S phase. Proteolysis of mitotic cyclins in yeast was shown to require association of the APC with the substrate-specific activator Hct1 (also called Cdh1). Phosphorylation of Hct1 by CDKs blocked the Hct1-APC interaction. The mutual inhibition between APC and CDKs explains how cells suppress mitotic CDK activity during G1 and then establish a period with elevated kinase activity from S phase until anaphase.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas Fúngicas/metabolismo , Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase , Ubiquitinas/metabolismo , Anáfase , Ciclossomo-Complexo Promotor de Anáfase , Proteína Quinase CDC2/metabolismo , Proteínas Cdh1 , Fase G1 , Mitose , Fosforilação , Proteínas Recombinantes de Fusão/metabolismo , Fase S , Saccharomyces cerevisiae/citologia , Ubiquitina-Proteína Ligases
8.
Science ; 261(5128): 1551-7, 1993 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-8372350

RESUMO

In budding yeast genes that encode G1 cyclins and proteins involved in DNA synthesis are transcriptionally activated in late G1. A transcription factor, called SBF, is composed of Swi4 and Swi6 proteins and activates transcription of G1 cyclin genes. A different, but related, complex called MBF binds to MCB elements (Mlu I cell cycle box) found in the promoter of most DNA synthesis genes. MBF contains Swi6 and a 120-kilodalton protein (p120). MBF was purified and the gene encoding p120 (termed MBP1) was cloned. A deletion of MBP1 was not lethal but led to deregulated expression of DNA synthesis genes, indicating a direct regulatory role for MBF in MCB-driven transcription. Mbp1 is related to Swi4. Strains deleted for both MBP1 and SWI4 were inviable, demonstrating that transcriptional activation by MBF and SBF has an important role in the transition from G1 to S phase.


Assuntos
Proteínas Fúngicas/genética , Fase G1 , Fase S , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Clonagem Molecular , Ciclinas/genética , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/citologia , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
9.
Science ; 274(5290): 1201-4, 1996 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-8895471

RESUMO

Entry into anaphase and proteolysis of B-type cyclins depend on a complex containing the tetratricopeptide repeat proteins Cdc16p, Cdc23p, and Cdc27p. This particle, called the anaphase-promoting complex (APC) or cyclosome, functions as a cell cycle-regulated ubiquitin-protein ligase. Two additional subunits of the budding yeast APC were identified: The largest subunit, encoded by the APC1 gene, is conserved between fungi and vertebrates and shows similarity to BIMEp from Aspergillus nidulans. A small heat-inducible subunit is encoded by the CDC26 gene. The yeast APC is a 36S particle that contains at least seven different proteins.


Assuntos
Anáfase , Proteínas de Ciclo Celular/química , Proteínas Fúngicas/química , Ligases/química , Mitose , Saccharomyces cerevisiae/química , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Centrifugação com Gradiente de Concentração , Ciclinas/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fase G1 , Genes Fúngicos , Ligases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases , Ubiquitinas/metabolismo
10.
Science ; 277(5324): 383-7, 1997 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-9219698

RESUMO

Cell divisions that produce progeny differing in their patterns of gene expression are key to the development of multicellular organisms. In the budding yeast Saccharomyces cerevisiae, mother cells but not daughter cells can switch mating type because they selectively express the HO endonuclease gene. This asymmetry is due to the preferential accumulation of an unstable transcriptional repressor protein, Ash1p, in daughter cell nuclei. Here it is shown that ASH1 messenger RNA (mRNA) preferentially accumulates in daughter cells by a process that is dependent on actin and myosin. A cis-acting element in the 3'-untranslated region of ASH1 mRNA is sufficient to localize a chimeric RNA to daughter cells. These results suggest that localization of mRNA may have been an early property of the eukaryotic lineage.


Assuntos
Actinas/fisiologia , Proteínas de Ligação a DNA , Cadeias Pesadas de Miosina , Miosina Tipo V , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/genética , Actinas/genética , Ciclo Celular , Núcleo Celular/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Hibridização in Situ Fluorescente , Microtúbulos/fisiologia , Mutação , Miosinas/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas Repressoras/biossíntese , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/biossíntese , Transformação Genética , Tropomiosina/genética , Tropomiosina/fisiologia , Dedos de Zinco
11.
Science ; 279(5354): 1216-9, 1998 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-9469814

RESUMO

Entry into anaphase and exit from mitosis depend on a ubiquitin-protein ligase complex called the anaphase-promoting complex (APC) or cyclosome. At least 12 different subunits were detected in the purified particle from budding yeast, including the previously identified proteins Apc1p, Cdc16p, Cdc23p, Cdc26p, and Cdc27p. Five additional subunits purified in low nanogram amounts were identified by tandem mass spectrometric sequencing. Apc2p, Apc5p, and the RING-finger protein Apc11p are conserved from yeast to humans. Apc2p is similar to the cullin Cdc53p, which is a subunit of the ubiquitin-protein ligase complex SCFCdc4 required for the initiation of DNA replication.


Assuntos
Anáfase , Proteínas Culina , Proteínas Fúngicas/química , Ligases/química , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Complexos Ubiquitina-Proteína Ligase , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Replicação do DNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Genes Fúngicos , Humanos , Ligases/genética , Ligases/isolamento & purificação , Espectrometria de Massas , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Fuso Acromático/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinas/metabolismo
12.
Trends Biochem Sci ; 24(3): 98-104, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10203756

RESUMO

Loss of cohesion between sister chromatids triggers their segregation during anaphase. Recent work has identified both a cohesin complex that holds sisters together and a sister-separating protein, separin, that destroys cohesion. Separins are bound by inhibitory proteins whose proteolysis at the metaphase-anaphase transition is mediated by the anaphase-promoting complex and its activator protein CDC20 (APCCDC20). When chromosomes are misaligned, a surveillance mechanism (checkpoint) blocks sister separation by inhibiting APCCDC20. Defects in this apparatus are implicated in causing aneuploidy in human cells.


Assuntos
Cromátides/fisiologia , Complexos Ubiquitina-Proteína Ligase , Anáfase , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas de Ciclo Celular/fisiologia , Cromátides/genética , Humanos , Ligases/fisiologia , Meiose , Metáfase , Ubiquitina-Proteína Ligases
13.
Curr Opin Genet Dev ; 3(2): 286-94, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8504254

RESUMO

The pedigree of mating-type switching in yeast is determined by the transcription pattern of the HO endonuclease gene, which is expressed during late G1 in mother cells but not at all in daughter cells. The late-G1 specificity of HO transcription depends on a heteromeric factor, SBF, which is composed of the Swi4 and Swi6 proteins. Mother-cell specificity involves a second site-specific DNA-binding factor, Swi5, which is synthesized in the G2 and M phases and only enters the nucleus at the end of mitosis. Swi5 enters mother and daughter nuclei in equal amounts and most is then rapidly degraded. It has been suggested that in mothers but not in daughters some Swi5 protein escapes degradation and persists until SBF is activated in late G1. This subset of Swi5 molecules may constitute a mother cell's memory.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sequência de Bases , Ciclo Celular , Diferenciação Celular , Desoxirribonucleases de Sítio Específico do Tipo II/biossíntese , Indução Enzimática , Proteínas Fúngicas/biossíntese , Genes Fúngicos , Fator de Acasalamento , Dados de Sequência Molecular , Peptídeos/metabolismo , Regiões Promotoras Genéticas , Reprodução , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/fisiologia , Esporos Fúngicos , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo , Transcrição Gênica
14.
Curr Biol ; 11(12): 991-5, 2001 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-11448778

RESUMO

The repair of DNA double-strand breaks by recombination requires the presence of an undamaged copy that is used as a template during the repair process. Because cells acquire resistance to gamma irradiation during DNA replication and because sister chromatids are the preferred partner for double-strand break repair in mitotic diploid yeast cells, it has long been suspected that cohesion between sister chromatids might be crucial for efficient repair. This hypothesis is consistent with the sensitivity to gamma irradiation of mutants defective in the cohesin complex that holds sister chromatids together from DNA replication until the onset of anaphase (reviewed in) . It is also in accordance with the finding that surveillance mechanisms (checkpoints) that sense DNA damage arrest cell cycle progression in yeast by causing stabilization of the securin Pds1, thereby blocking sister chromatid separation. The hypersensitivity to irradiation of cohesin mutants could, however, be due to a more direct involvement of the cohesin complex in the process of DNA repair. We show here that passage through S phase in the presence of cohesin, and not cohesin per se, is essential for efficient double-strand break repair during G2 in yeast. Proteins needed to load cohesin onto chromosomes (Scc2) and to generate cohesion during S phase (Eco1) are also shown to be required for repair. Our results confirm what has long been suspected but never proven, that cohesion between sister chromatids is essential for efficient double-strand break repair in mitotic cells.


Assuntos
Acetiltransferases , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Reparo do DNA/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona , Dano ao DNA , Eletroforese em Gel de Campo Pulsado , Proteínas Fúngicas/metabolismo , Raios gama , Proteínas Nucleares/genética , Fosfoproteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Temperatura , Coesinas
15.
Curr Biol ; 8(20): 1095-101, 1998 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-9778527

RESUMO

BACKGROUND: Cohesion between sister chromatids, which opposes the splitting force exerted by the mitotic spindle during metaphase, is essential for their segregation to opposite poles of the cell during anaphase. In Saccharomyces cerevisiae, cohesion depends on a set of chromosomal proteins called cohesins, which include structural maintenance of chromosomes 1p (Smc1p), Smc3p and sister chromatid cohesion 1p (Scc1p). Strains with mutations in the genes encoding these proteins separate sister chromatids prematurely and fail to align them in metaphase. This leads to missegregation of chromosomes in the following anaphase. RESULTS: In a normal cell cycle, Scc1p was synthesized and recruited to chromosomes at the onset of S phase. Using cells that expressed Scc1p exclusively from a galactose-inducible promoter, we showed that if Scc1p was synthesised only after completion of S phase, it still bound to chromosomes but failed to promote sister chromatid cohesion. CONCLUSIONS: Cohesion between sister chromatids must be established during DNA replication, possibly following the passage of a replication fork. Furthermore, Scc1p (and other cohesins) are needed both for maintaining cohesion during mitosis and for establishing it during S phase. Establishment of sister chromatid cohesion is therefore an essential but hitherto neglected aspect of S phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides , Replicação do DNA , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona , Cromossomos Fúngicos/metabolismo , Fase G2 , Proteínas Nucleares , Fosfoproteínas , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
16.
Curr Biol ; 5(11): 1257-69, 1995 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-8574583

RESUMO

BACKGROUND: DNA replication and mitosis are triggered by activation of kinase complexes, each made up of a cyclin and a cyclin-dependent kinase (Cdk). It had seemed possible that the association of Cdks with different classes of cyclins specifies whether S phase (replication) or M phase (mitosis) will occur. The recent finding that individual B-type cyclins (encoded by the genes CLB1-CLB6) can have functions in both processes in the budding yeast Saccharomyces cerevisiae casts doubt on this notion. RESULTS: S. cerevisiae strains lacking C1b1-C1b4 undergo DNA replication once but fail to enter mitosis. We have isolated mutations in two genes, SIM1 and SIM2 (SIM2 is identical to SEC72), which allow such cells to undergo an extra round of DNA replication without mitosis. The Clb5 kinase, which promotes S phase, remains active during the G2-phase arrest of cells of the parental strain, but its activity declines rapidly in sim mutants. Increased expression of the CLB5 gene prevents re-replication. Thus, a cyclin B-kinase that promotes DNA replication in G1-phase cells can prevent re-replication in G2-phase cells. Inactivation of C1b kinases by expression of the specific C1b-Cdk1 inhibitor p40SIC1 is sufficient to induce a prereplicative state at origins of replication in cells blocked in G2/M phase by nocodazole. Re-activation of C1b-Cdk1 kinases induces a second round of DNA replication. CONCLUSIONS: We propose that S-phase-promoting cyclin B--Cdk complexes prevent re-replication during S, G2 and M phases by inhibiting the transition of replication origins to a pre-replicative state. This model can explain both why origins 'fire' only once per S phase and why S phase is dependent on completion of the preceding M phase.


Assuntos
Ciclo Celular/fisiologia , Ciclina B , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Replicação do DNA/fisiologia , Origem de Replicação/fisiologia , Proteínas de Saccharomyces cerevisiae , Clonagem Molecular , Ciclinas/genética , Fase G2 , Regulação da Expressão Gênica , Mutação , Nocodazol/farmacologia , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
17.
Curr Biol ; 10(24): 1557-64, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11137006

RESUMO

BACKGROUND: Sister chromatid cohesion depends on a complex called cohesin, which contains at least four subunits: Smc1, Smc3, Scc1 and Scc3. Cohesion is established during DNA replication, is partially dismantled in many, but not all, organisms during prophase, and is finally destroyed at the metaphase-to-anaphase transition. A quite separate protein called Spo76 is required for sister chromatid cohesion during meiosis in the ascomycete Sordaria. Spo76-like proteins are highly conserved amongst eukaryotes and a homologue in Aspergillus nidulans, called BimD, is required for the completion of mitosis. The isolation of the cohesin subunit Smc3 as a suppressor of BimD mutations suggests that Spo76/BimD might function in the same process as cohesin. RESULTS: We show here that the yeast homologue of Spo76, called Pds5, is essential for establishing sister chromatid cohesion and maintaining it during metaphase. We also show that Pds5 co-localizes with cohesin on chromosomes, that the chromosomal association of Pds5 and cohesin is interdependent, that Scc1 recruits Pds5 to chromosomes in G1 and that its cleavage causes dissociation of Pds5 from chromosomes at the metaphase-to-anaphase transition. CONCLUSIONS: Our data show that Pds5 functions as part of the same process as cohesin. Sequence similarities and secondary structure predictions indicate that Pds5 consists of tandemly repeated HEAT repeats, and might therefore function as a protein-protein interaction scaffold, possibly in the cohesin-DNA complex assembly.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Fúngicas , Proteínas Nucleares/metabolismo , Animais , Western Blotting , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Separação Celular , Proteínas Cromossômicas não Histona , DNA/metabolismo , Citometria de Fluxo , Genes Reporter , Humanos , Substâncias Macromoleculares , Proteínas Nucleares/genética , Fosfoproteínas , Testes de Precipitina , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Coesinas
18.
Curr Biol ; 9(6): 337-40, 1999 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-10209099

RESUMO

Localization of ASH1 mRNA to the distal cortex of daughter but not mother cells at the end of anaphase is responsible for the two cells' differential mating-type switching during the subsequent cell cycle. This localization depends on actin filaments and a type V myosin (She1/Myo4). The 3' untranslated region (3' UTR) of ASH1 mRNA is reportedly capable of directing heterologous RNAs to a mother cell's bud [1] [2]. Surprisingly, however, its replacement has little or no effect on the localisation of ASH1 mRNA. We show here that, unlike all other known localization sequences that have been found in 3' UTRs, all the elements involved in ASH1 mRNA localization are located at least partly within its coding region. A 77 nucleotide region stretching from 7 nucleotides 5' to 67 nucleotides 3' of the stop codon of ASH1 mRNA is sufficient to localize mRNAs to buds; the secondary structure of this region, in particular two stems, is important for its localizing activity. Two regions entirely within coding sequences, both sufficient to localize green fluorescent protein (GFP) mRNA to growing buds, are necessary for ASH1 mRNA localization during anaphase. These three regions can anchor GFP mRNA to the distal cortex of daughter cells only inefficiently. The tight anchoring of ASH1 mRNA to the cortex of the daughter cell depends on translation of the carboxy-terminal sequences of Ash1 protein.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Proteínas de Ligação a DNA , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Miosinas/fisiologia , Biossíntese de Proteínas , Isoformas de Proteínas/fisiologia , RNA Fúngico/química , RNA Mensageiro/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Regiões 3' não Traduzidas/genética , Anáfase , Polaridade Celular , Proteínas Fúngicas/biossíntese , Genes Reporter , Microscopia de Fluorescência , Conformação de Ácido Nucleico , RNA Fúngico/metabolismo , RNA Mensageiro/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/biossíntese
19.
Curr Biol ; 11(23): 1825-35, 2001 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-11728305

RESUMO

BACKGROUND: Chromosome segregation during mitosis and meiosis is triggered by dissolution of sister chromatid cohesion, which is mediated by the cohesin complex. Mitotic sister chromatid disjunction requires that cohesion be lost along the entire length of chromosomes, whereas homolog segregation at meiosis I only requires loss of cohesion along chromosome arms. During animal cell mitosis, cohesin is lost in two steps. A nonproteolytic mechanism removes cohesin along chromosome arms during prophase, while the proteolytic cleavage of cohesin's Scc1 subunit by separase removes centromeric cohesin at anaphase. In Saccharomyces cerevisiae and Caenorhabditis elegans, meiotic sister chromatid cohesion is mediated by Rec8, a meiosis-specific variant of cohesin's Scc1 subunit. Homolog segregation in S. cerevisiae is triggered by separase-mediated cleavage of Rec8 along chromosome arms. In principle, chiasmata could be resolved proteolytically by separase or nonproteolytically using a mechanism similar to the mitotic "prophase pathway." RESULTS: Inactivation of separase in C. elegans has little or no effect on homolog alignment on the meiosis I spindle but prevents their timely disjunction. It also interferes with chromatid separation during subsequent embryonic mitotic divisions but does not directly affect cytokinesis. Surprisingly, separase inactivation also causes osmosensitive embryos, possibly due to a defect in the extraembryonic structures, referred to as the "eggshell." CONCLUSIONS: Separase is essential for homologous chromosome disjunction during meiosis I. Proteolytic cleavage, presumably of Rec8, might be a common trigger for the first meiotic division in eukaryotic cells. Cleavage of proteins other than REC-8 might be necessary to render the eggshell impermeable to solutes.


Assuntos
Caenorhabditis elegans/citologia , Proteínas de Ciclo Celular/metabolismo , Cromossomos , Endopeptidases , Meiose , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Clonagem Molecular , Primers do DNA , Hibridização in Situ Fluorescente , Mutação , Proteínas de Saccharomyces cerevisiae , Separase
20.
Curr Biol ; 11(13): 1001-9, 2001 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-11470404

RESUMO

BACKGROUND: Meiosis is the process by which gametes are generated with half the ploidy of somatic cells. This reduction is achieved by three major differences in chromosome behavior during meiosis as compared to mitosis: the production of chiasmata by recombination, the protection of centromere-proximal sister chromatid cohesion, and the monoorientation of sister kinetochores during meiosis I. Mistakes in any of these processes lead to chromosome missegregation. RESULTS: To identify genes involved in meiotic chromosome behavior in Saccharomyces cerevisiae, we deleted 301 open reading frames (ORFs) which are preferentially expressed in meiotic cells according to microarray gene expression data. To facilitate the detection of chromosome missegregation mutants, chromosome V of the parental strain was marked by GFP. Thirty-three ORFs were required for the formation of wild-type asci, eight of which were needed for proper chromosome segregation. One of these (MAM1) is essential for the monoorientation of sister kinetochores during meiosis I. Two genes (MND1 and MND2) are implicated in the recombination process and another two (SMA1 and SMA2) in prospore membrane formation. CONCLUSIONS: Reverse genetics using gene expression data is an effective method for identifying new genes involved in specific cellular processes.


Assuntos
Genes Fúngicos , Meiose/genética , Saccharomyces cerevisiae/genética , Esporos Fúngicos/genética , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Segregação de Cromossomos/genética , Deleção de Genes , Perfilação da Expressão Gênica , Fases de Leitura Aberta , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA