Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Microdevices ; 19(3): 44, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28526975

RESUMO

This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.


Assuntos
Benzamidas/química , Carbamatos/química , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Água/química , Animais , Benzamidas/metabolismo , Encéfalo/metabolismo , Carbamatos/metabolismo , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Glicerídeos/química , Cinética , Masculino , Tamanho da Partícula , Polissorbatos/química , Ratos , Ratos Wistar , Solubilidade , Distribuição Tecidual , Triglicerídeos/química
2.
Biomed Microdevices ; 18(1): 4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26747434

RESUMO

We describe a cost-effective and simple method to fabricate PDMS-based microfluidic devices by combining micromilling with replica moulding technology. It relies on the following steps: (i) microchannels are milled in a block of acrylic; (ii) low-cost epoxy adhesive resin is poured over the milled acrylic block and allowed to cure; (iii) the solidified resin layer is peeled off the acrylic block and used as a mould for transferring the microchannel architecture onto a PDMS layer; finally (iv) the PDMS layer is plasma bonded to a glass surface. With this method, microscale architectures can be fabricated without the need for advanced technological equipment or laborious and time-consuming intermediate procedures. In this manuscript, we describe and validate the microfabrication procedure, and we illustrate its applicability to emulsion and microbubble production.


Assuntos
Dimetilpolisiloxanos/química , Dispositivos Lab-On-A-Chip , Nylons/química
3.
Xenotransplantation ; 22(4): 273-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26134468

RESUMO

BACKGROUND: Porcine Sertoli cells (pSCs) have been employed for cell therapy in pre-clinical studies for several chronic/immune diseases as they deliver molecules associated with trophic and anti-inflammatory effects. To be employed for human xenografts, pSCs products need to comply with safety and stability. To fulfill such requirements, we employed a microencapsulation technology to increase pre-transplant storage stability of specific pathogen-free pSCs (SPF-pSCs) and evaluated the in vivo long-term viability and safety of grafts. METHODS: Specific pathogen free neonatal pigs underwent testis excision under sterility. pSCs were isolated, characterized by immunofluorescence (IF) and cytofluorimetric analysis (CA) and examined in terms of viability and function [namely, production of anti-müllerian hormone (AMH), inhibin B, and transforming growth factor beta-1 (TFGß-1)]. After microencapsulation in barium alginate microcapsules (Ba-MC), long-term SPF-pSCs (Ba-MCpSCs) viability and barium concentrations were evaluated at 1, 24 throughout 40 h to establish pre-transplant storage conditions. RESULTS: The purity of isolated pSCs was about 95% with negligible contaminating cells. Cultured pSCs monolayers, both prior to and after microencapsulation, maintained high function and full viability up to 24 h of storage. At 40 h post-encapsulation, pSCs viability decreased to 80%. Barium concentration in Ba-MCpSCs lagged below the normal maximum daily allowance and was stable for 4 months in mice with no evident side effects. CONCLUSIONS: Such results suggest that this protocol for the isolation and microencapsulation of pSCs is compatible with long-haul transportation and that Ba-MCpSCs could be potentially employable for xenotransplantation.


Assuntos
Células de Sertoli/transplante , Transplante Heterólogo/métodos , Alginatos , Animais , Animais Recém-Nascidos , Separação Celular , Transplante de Células/métodos , Células Cultivadas , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Masculino , Camundongos , Células de Sertoli/citologia , Células de Sertoli/fisiologia , Organismos Livres de Patógenos Específicos , Suínos
4.
J Biomed Mater Res A ; 112(7): 973-987, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308554

RESUMO

The degeneration of intervertebral disc (IVD) is a disease of the entire joint between two vertebrae in the spine caused by loss of extracellular matrix (ECM) integrity, to date with no cure. The various regenerative approaches proposed so far have led to very limited successes. An emerging opportunity arises from the use of decellularized ECM as a scaffolding material that, directly or in combination with other materials, has greatly facilitated the advancement of tissue engineering. Here we focused on the decellularized matrix obtained from human umbilical cord Wharton's jelly (DWJ) which retains several structural and bioactive molecules very similar to those of the IVD ECM. However, being a viscous gel, DWJ has limited ability to retain ordered structural features when considered as architecture scaffold. To overcome this limitation, we produced DWJ-based multifunctional hydrogels, in the form of 3D millicylinders containing different percentages of alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, which may impart mechanical integrity to the biologically active DWJ. The developed protocol, based on a freezing step, leads to the consolidation of the entire polymeric dispersion mixture, followed by an ionic gelation step and a freeze-drying process. Finally, a porous, stable, easily storable, and suitable matrix for ex vivo experiments was obtained. The properties of the millicylinders (Wharton's jelly millicylinders [WJMs]) were then tested in culture of degenerated IVD cells isolated from disc tissues of patients undergoing surgical discectomy. We found that WJMs with the highest percentage of DWJ were effective in supporting cell migration, restoration of the IVD phenotype (increased expression of Collagen type 2, aggrecan, Sox9 and FOXO3a), anti-inflammatory action, and stem cell activity of resident progenitor/notochordal cells (increased number of CD24 positive cells). We are confident that the DWJ-based formulations proposed here can provide adequate stimuli to the cells present in the degenerated IVD to restart the anabolic machinery.


Assuntos
Hidrogéis , Disco Intervertebral , Regeneração , Geleia de Wharton , Humanos , Geleia de Wharton/citologia , Hidrogéis/química , Hidrogéis/farmacologia , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/patologia , Alicerces Teciduais/química , Células Cultivadas
5.
J Cell Physiol ; 227(2): 857-66, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21830215

RESUMO

The development and the optimization of novel culture systems of mesenchymal osteoprogenitors are some of the most important challenges in the field of bone tissue engineering (TE). A new combination between cells and extracellular matrix (ECM)-scaffold, containing ECM has here been analyzed. As source for osteoprogenitors, mesenchymal stem cells obtained from human umbilical cord Wharton's Jelly (hWJMSCs), were used. As ECM-scaffold, a powder form of isolated and purified porcine urinary bladder matrix (pUBM), was employed. The goals of the current work were: (1) the characterization of the in vitro hWJMSCs behavior, in terms of viability, proliferation, and adhesion to ECM-scaffold; (2) the effectiveness of ECM-scaffold to induce/modulate the osteoblastic differentiation; and (3) the proposal for a possible application of cells/ECM-scaffold construct to the field of cell/TE. In this respect, the properties of the pUBM-scaffold in promoting and guiding the in vitro adhesion, proliferation, and three-dimensional colonization of hWJMSCs, without altering viability and morphological characteristics of the cells, are here described. Finally, we have also demonstrated that pUBM-scaffolds positively affect the expression of typical osteoblastic markers in hWJMSCs.


Assuntos
Matriz Extracelular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Alicerces Teciduais , Geleia de Wharton/citologia , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Meios de Cultura , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Microscopia Eletrônica de Varredura , beta Catenina/genética , beta Catenina/metabolismo
6.
Life Sci ; 301: 120623, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537547

RESUMO

AIMS: The main cause of low back pain is the intervertebral disc (IVD) degeneration. Designing an effective disc regeneration strategy still remains a major challenge, especially for the lack of effective self-healing capacity. Understanding the properties of IVD cells in the degenerate microenvironment could help to develop in situ regeneration strategies. The objective of the present study was to investigate the ability of degenerate cells to respond to conditions they experience physiologically in their niche in vivo, namely the presence of the hypoxic environment and trophic factors. MAIN METHODS: Degenerate cells from IVD of patients operated for herniated disc were exposed to hypoxic priming and decellularized Wharton's jelly matrix (DWJM) as scaffold and trophic factors source for 48 h in culture. Cell response was evaluated in terms of cell viability, proliferation, cytoskeletal organization, migratory ability and expression of discogenic transcription factors (SOX9, TRPS1), hypoxia-inducible factor 1α (HIF-1α) and longevity transcription factor FOXO3a. The recruitment of HIF-1α at FOXO3a and SOX9 gene promoters was analyzed by Chromatin immunoprecipitation. KEY FINDINGS: Degenerate IVD cells were able to re-acquire the discogenic phenotype, and to re-adapt to hypoxia after exposure to hypoxic priming and DWJM. We demonstrated for the first time that HIF-1α is specifically recruited at the promoter of SOX9 and FOXO3a which are crucial for IVD homeostasis and repair. SIGNIFICANCE: These results open new avenues to engineer IVD by demonstrating that appropriate stimuli are able to dampen the degenerated IVD cell phenotype and to promote anabolic activity in cells which are constitutively characterized by poor reparative capacity.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Matriz Extracelular Descelularizada , Humanos , Hipóxia/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Fenótipo , Proteínas Repressoras/metabolismo
7.
Emergent Mater ; 4(1): 249-263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585794

RESUMO

Infections acquired in public spaces (i.e., transports, restaurants, and bars, hospitals) present a serious burden for the entire health systems. In this respect, appropriate preventative and control measures in order to eliminate or reduce the negative effects of surface-transmitted infections appear highly desirable. Alongside recommendations for treatment and hygiene, antimicrobial material surfaces can offer indeed an important contribution to the prevention of infections. The aim of the current paper is therefore to describe the preparation and characterization of a new material obtained by an innovative anodic oxidation, defined as golden hard anodizing GHA. The anodic oxide surface thanks to the nanoporous structure acts as reservoir of silver ions (Ag+) which in turn confer antimicrobial properties to the material surface. Specifically, the manuscript presents a thorough preparation and characterization of a new material obtained by an innovative anodic oxidation treatment applied on commercially available aluminum alloys including the microscopic analysis and the description of the antimicrobial performances against a number of microorganisms, including among the others, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. More specifically, the current article describes some of the properties of GHA materials. The tribological properties of GHA were evaluated through experimental tests performed with a pin-on-disk tribometer. The morphology of the wear surfaces was studied by means of a scanning electron microscope (SEM) analysis and profilometry investigations. Furthermore, in order to evaluate the possible anticorrosive properties of GHA, tests in neutral salt spray are in addition described.

8.
Artigo em Inglês | MEDLINE | ID: mdl-20936184

RESUMO

We have developed a microencapsulation procedure for the entrapment and manipulation of IB3-1 cystic fibrosis cells. The applied method is based on generation of monodisperse droplets by a vibrational nozzle. Different experimental parameters were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. We have found that the microencapsulation procedure does not alter the viability of the encapsulated IB3-1 cells. The encapsulated IB3-1 cells were characterized in term of secretomic profile, analyzing the culture medium by Bio-Plex strategy. The experiments demonstrated that most of the analyzed proteins, were secreted both by the free and encapsulated cells, even if in a different extent. In order to determine the biotechnological applications of this procedure, we determined whether encapsulated IB3-1 cells could be induced to pro-inflammatory responses, after treatment with TNF-α. In this experimental set-up, encapsulated and free IB3-1 cells were treated with TNF-α, thereafter the culture media from both cell populations were collected. As expected, TNF-α induced a sharp increase in the secretion of interleukins, chemokines and growth factors. Of great interest was the evidence that induction of interleukin-6 and interleukin-8 occurs also by encapsulated IB3-1 cells.


Assuntos
Alginatos , Fibrose Cística , Células Epiteliais , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Microesferas , Fator de Necrose Tumoral alfa/metabolismo , Alginatos/química , Alginatos/farmacologia , Brônquios/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Composição de Medicamentos/métodos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Humanos , Interleucina-6/genética , Interleucina-8/genética , Microscopia , Tamanho da Partícula , Proteoma/metabolismo , Projetos de Pesquisa
9.
AAPS PharmSciTech ; 11(3): 1257-67, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20706878

RESUMO

This article describes the preparation of starch particles, by spray drying, for possible application to a dry powder coating process. Dry powder coating consists of spraying a fine powder and a plasticizer on particles. The efficiency of the coating is linked to the powder morphological and dimensional characteristics. Different experimental parameters of the spray-drying process were analyzed, including type of solvent, starch concentration, rate of polymer feeding, pressure of the atomizing air, drying air flow, and temperature of drying air. An optimization and screening of the experimental parameters by a design of the experiment (DOE) approach have been done. Finally, the produced spray-dried starch particles were conveniently tested in a dry coating process, in comparison to the commercial initial starch. The obtained results, in terms of coating efficiency, demonstrated that the spray-dried particles led to a sharp increase of coating efficiency value.


Assuntos
Técnicas de Química Combinatória/métodos , Interpretação Estatística de Dados , Composição de Medicamentos/métodos , Modelos Químicos , Pós/química , Amido/química , Simulação por Computador , Dessecação , Modelos Estatísticos , Tamanho da Partícula
10.
Micromachines (Basel) ; 11(11)2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203143

RESUMO

Hydrogel microbeads hold great promise for immune-protective cell transplants and in vitro studies. Millifluidic generation of hydrogel microbeads is a highly efficient and reproducible approach enabling a mass production. This paper illustrates the preparation and characterization of highly controlled and reproducible microbeads made by different types of hydrogel using millifluidic approaches. The optimization of the process was made by a design of experiments (DoE) approach. The microbeads' large-scale production can be potentially used for single cells or clusters encapsulation.

11.
Pharmaceutics ; 12(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105650

RESUMO

Continuous-flow production of liposomes using microfluidic reactors has demonstrated advantages compared to batch methods, including greater control over liposome size and size distribution and reduced reliance on post-production processing steps. However, the use of microfluidic technology for the production of nanoscale vesicular systems (such as liposomes) has not been fully translated to industrial scale yet. This may be due to limitations of microfluidic-based reactors, such as low production rates, limited lifetimes, and high manufacturing costs. In this study, we investigated the potential of millimeter-scale flow reactors (or millireactors) with a serpentine-like architecture, as a scalable and cost-effective route to the production of nanoscale liposomes. The effects on liposome size of varying inlet flow rates, lipid type and concentration, storage conditions, and temperature were investigated. Liposome size (i.e., mean diameter) and size dispersity were characterised by dynamic light scattering (DLS); z-potential measurements and TEM imaging were also carried out on selected liposome batches. It was found that the lipid type and concentration, together with the inlet flow settings, had significant effects on the properties of the resultant liposome dispersion. Notably, the millifluidic reactor was able to generate liposomes with size and dispersity ranging from 54 to 272 nm, and from 0.04 to 0.52 respectively, at operating flow rates between 1 and 10 mL/min. Moreover, when compared to a batch ethanol-injection method, the millireactor generated liposomes with a more therapeutically relevant size and size dispersity.

12.
Int J Nanomedicine ; 15: 1745-1758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214808

RESUMO

PURPOSE: Solid lipid nanoparticles are largely used in biomedical research and are characterized by high stability and biocompatibility and are also able to improve the stability of various loaded molecules. In vitro studies demonstrated that these nanoparticles are low cytotoxic, while in vivo studies proved their efficiency as nanocarriers for molecules characterized by a low bioavailability. However, to our knowledge, no data on the systemic biodistribution and organ accumulation of solid lipid nanoparticles in itself are presently available. METHODS: In this view, we investigated the solid lipid nanoparticles biodistribution by a multimodal imaging approach correlating in vivo and ex vivo analyses. We loaded solid lipid nanoparticles with two different fluorophores (cardiogreen and rhodamine) to observe them with an optical imager in the whole organism and in the excised organs, and with fluorescence microscopy in tissue sections. Light and transmission electron microscopy analyses were also performed to evaluate possible structural modification or damage due to nanoparticle administration. RESULTS: Solid lipid nanoparticles loaded with the two fluorochromes showed good optic characteristics and stable polydispersity. After in vivo administration, they were clearly detectable in the organism. Four  hours after the injection, the fluorescent signal occurred in anatomical districts corresponding to the liver and this was confirmed by the ex vivo acquisitions of excised organs. Brightfield, fluorescence and transmission electron microscopy confirmed solid lipid nanoparticles accumulation in hepatocytes without structural damage. CONCLUSION: Our results support the systemic biocompatibility of solid lipid nanoparticles and demonstrate their detailed biodistribution from the whole organism to organs until the cells.


Assuntos
Nanopartículas/análise , Nanopartículas/química , Animais , Disponibilidade Biológica , Corantes Fluorescentes/química , Verde de Indocianina/química , Lipídeos/química , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , Masculino , Camundongos Nus , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Imagem Multimodal/métodos , Rodaminas/química , Distribuição Tecidual
13.
Biomicrofluidics ; 13(2): 024106, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31040886

RESUMO

The fabrication of microfluidic chips remains a complex and expensive process requiring specific equipment and protocols, often if not always limited to the most privileged laboratories. As an alternative to the most sophisticated methods, the present paper describes the fabrication of microfluidic chips by an approach that uses coins as positive master for the rapid production of multigeometry chips. All steps of chip production were carried out using inexpensive approaches by low-cost chemicals and equipment. The chips were validated by different "classic" microfluidic tasks, such as hydrodynamic focusing, droplets generation, micromixing, and on-chip cell culture. The use of coins is not only an efficient method for rapid prototyping but also represents an inspiring possibility for the design of new microfluidic chips. Finally, coin-inspired chips could represent a laboratory experiment doable at a high school level.

14.
Curr Pharm Des ; 25(21): 2323-2337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31584367

RESUMO

The skin and mucous membranes are subjected to many disorders and pathological conditions. Nature offers a wide range of molecules with antioxidant activity able to neutralize, at least in part, the formation of free radicals and therefore to counteract the phenomena of cellular aging. Since synthetic drugs for the treatment of skin diseases can induce resistance, it is particularly interesting to use compounds of plant origin, transporting them in pharmaceutical forms capable of controlling their release and absorption. This review provides an overview of new findings about the use of lipid-based nanosystems for the delivery of natural molecules useful on the topical treatment of skin disorders. Several natural molecules encapsulated in lipid nanosystems have been considered in the treatment of some skin pathologies or diseases. Particularly, the use of rosemary and eucalyptus essential oil, saffron derivatives, curcumin, eugenol, capsaicin, thymol and lycopene has been reported. The molecules have been alternatively encapsulated in viscous systems, such as the organogels, or in liquid systems, such as ethosomes, transferosomes, solid lipid nanoparticles and monoolein based dispersions thickened by inclusion in carbomer gels. The nanostructured forms have been in vitro and in vivo investigated for the treatment of skin disorders due to dehydration, inflammation, melanoma, wound healing, fungal infections or psoriasis. The data reported in the different studies have suggested that the cutaneous application of lipid nanosystems allows a deep interaction between lipid matrix and skin strata, promoting a prolonged release and efficacy of the loaded natural molecules. This review suggests that the application of natural molecules onto the skin by lipid-based nanosystems can provide numerous clinician benefits in dermatology and cosmetics.


Assuntos
Portadores de Fármacos , Lipídeos , Nanopartículas , Preparações de Plantas/administração & dosagem , Dermatopatias/tratamento farmacológico , Administração Cutânea , Administração Tópica , Humanos , Nanomedicina , Absorção Cutânea
15.
Micromachines (Basel) ; 10(4)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010232

RESUMO

Traditional two-dimensional (2D) cell culture models are limited in their ability to reproduce human structures and functions. On the contrary, three-dimensional (3D) microtissues have the potential to permit the development of new cell-based assays as advanced in vitro models to test new drugs. Here, we report the use of a dehydrated gelatin film to promote tumor cells aggregation and 3D microtissue formation. The simple and stable gelatin coating represents an alternative to conventional and expensive materials like type I collagen, hyaluronic acid, or matrigel. The gelatin coating is biocompatible with several culture formats including microfluidic chips, as well as standard micro-well plates. It also enables long-term 3D cell culture and in situ monitoring of live/dead assays.

16.
Beilstein J Nanotechnol ; 10: 1789-1801, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31501750

RESUMO

This investigation is a study of new lipid nanoparticles for cutaneous antioxidant delivery. Several molecules, such as α-tocopherol and retinoic acid, have been shown to improve skin condition and even counteract the effects of exogenous stress factors such as smoking on skin aging. This work describes the design and development of lipid nanoparticles containing antioxidant agents (α-tocopherol or retinoic acid) to protect human skin against pollutants. Namely, solid lipid nanoparticles and nanostructured lipid carriers were prepared using different lipids (tristearin, compritol, precirol or suppocire) in the presence or absence of caprylic/capric triglycerides. The formulations were characterized by particle size analysis, cryogenic transmission electron microscopy, small-angle X-ray diffraction, encapsulation efficiency, preliminary stability, in vitro cytotoxicity and protection against cigarette smoke. Nanostructured lipid carriers were found to reduce agglomerate formation and provided better dimensional stability, as compared to solid lipid nanoparticles, suggesting their suitability for antioxidant loading. Based on the preformulation study, tristearin-based nanostructured lipid carriers loaded with α-tocopherol were selected for ex vivo studies since they displayed superior physico-chemical properties as compared to the other nanostructured lipid carriers compositions. Human skin explants were treated with α-tocopherol-loaded nanostructured lipid carriers and then exposed to cigarette smoke, and the protein levels of the stress-induced enzyme heme oxygenase were analyzed in skin homogenates. Interestingly, it was found that pretreatment with the nanoformulation resulted in significantly reduced heme oxygenase upregulation as compared to control samples, suggesting a protective effect provided by the nanoparticles.

17.
Lab Chip ; 8(4): 617-21, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18369518

RESUMO

The present paper reports the production of Ba-alginate microspheres by microfluidic chip technology. The general production strategy is based on the formation of an alginate multiphase flow by a 'Y' junction squeezing mechanism. Special emphasis is given to the relationship existing between the gelation process and the final morphological characteristics of the produced microbeads. A series of different gelation strategies, namely: 'external gelation', 'internal gelation' and 'partial gelation' were compared in terms of size, size distribution and morphology of the produced microbeads.


Assuntos
Alginatos/síntese química , Géis/química , Técnicas Analíticas Microfluídicas/métodos , Microesferas , Alginatos/ultraestrutura , Técnicas Analíticas Microfluídicas/instrumentação , Tamanho da Partícula , Fotomicrografia/métodos
18.
Int J Pharm ; 356(1-2): 19-28, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18258393

RESUMO

The aim of the present paper was to investigate the influence of different formulation parameters on the rheological and functional properties of emulgels (gelified emulsions), intended for the buccal administration of the antiinflammatory drug flurbiprofen. The influence of formulation parameters, such as (a) the amount of gelling polymeric emulsifier (Pemulen 1621 TR-1) used, (b) the oil to water ratio present in the O/W emulgel and finally (c) the pH of the formulation, was studied by a experimental design (DoE) approach. Formulations were analyzed in term of size and morphology of the internal semi-solid oil droplets as well as in term of rheological properties in the presence or in the absence of flurbiprofen by "shear stress vs. shear rate tests" and "frequency sweep tests". Emulgels were also characterized in vitro both by bioadhesion tests and release studies. In particular release studies demonstrated that flurbiprofen is released by the emulgels in a controlled manner, the drug release efficacy within the first 100min was comprised between 50 and 80% of the total amount of the drug. Finally, in vivo tests on healthy volunteers have demonstrated that emulgels were able to remain on buccal mucosa for an average period of 1h, moreover emulgels did not have bad taste and volunteers referred that were agreeable and pleasant.


Assuntos
Anti-Inflamatórios não Esteroides/química , Excipientes/química , Flurbiprofeno/química , Adesividade , Administração Bucal , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Química Farmacêutica , Preparações de Ação Retardada , Emulsões/química , Flurbiprofeno/administração & dosagem , Géis/química , Humanos , Concentração de Íons de Hidrogênio , Mucosa Bucal/metabolismo , Óleos/química , Reologia , Suínos , Paladar , Água/química
19.
Polymers (Basel) ; 10(2)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30966196

RESUMO

This study describes the design and characterization of a liposphere gel containing clotrimazole for the treatment of Candida albicans. Lipospheres were produced by the melt-dispersion technique, using a lipid phase constituted of stearic triglyceride in a mixture with caprylic/capric triglyceride or an alkyl lactate derivative. The latter component was added to improve the action of clotrimazole against candida. The liposphere morphology and dimensional distribution were evaluated by scanning electron microscopy. Clotrimazole release kinetics was investigated by an in vitro dialysis method. An anticandidal activity study was conducted on the lipospheres. To obtain formulations with suitable viscosity for vaginal application, the lipospheres were added to a xanthan gum gel. The rheological properties, spreadability, leakage, and adhesion of the liposphere gel were investigated. Clotrimazole encapsulation was always over 85% w/w. The anticandidal study demonstrated that the encapsulation of clotrimazole in lipospheres increased its activity against Candida albicans, especially in the presence of the alkyl lactate derivative in the liposphere matrix. A dialysis method demonstrated that clotrimazole was slowly released from the liposphere gel and that the alkyl lactate derivative further controlled clotrimazole release. Adhesion and leakage tests indicated a prolonged adhesion of the liposphere gel, suggesting its suitability for vaginal application.

20.
Toxicol In Vitro ; 48: 45-52, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29273543

RESUMO

Environmental pollution is one of the main factors responsible for reducing fertility in males. Lead is one of the major heavy metal contaminants that impairs several organs; it preferentially accumulates in male reproductive organs and alters sperm quality both in vivo and in vitro. However, the underlying mechanisms remain unclear. Sertoli cells (SCs) provide structural and physiological support to spermatogenic cells within seminiferous tubules. Therefore, changes in SCs affect the developing germ cells and alter spermatogenesis. This study aimed to assess whether exposure to subtoxic doses of adversely affects SC functioning in higher mammals. Purified and functional porcine neonatal SCs were exposed to lead acetate at three different concentrations. Lead exposure decreased the mRNA expression and protein levels of inhibin B and anti-Mullerian hormone (AMH) compared to control, indicating loss of FSH-r integrity in terms of 17-ß-oestradiol production under FSH stimulation. In addition, we observed an increase in the mRNA levels of Akt and mTOR, and the phosphorylation of p38 and Akt in SCs exposed to lead at all concentrations compared to unexposed control SCs. In conclusion, lead is toxic to SCs, even at low concentrations, and is expected to alter spermatogenesis.


Assuntos
Compostos Organometálicos/toxicidade , Células de Sertoli/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Hormônio Antimülleriano/metabolismo , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Células Germinativas/efeitos dos fármacos , Inibinas/metabolismo , Masculino , RNA Mensageiro/biossíntese , RNA Mensageiro/efeitos dos fármacos , Receptores do FSH/efeitos dos fármacos , Túbulos Seminíferos/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA