Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Strength Cond Res ; 37(9): 1729-1737, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37616533

RESUMO

ABSTRACT: Neltner, TJ, Sahoo, PK, Smith, RW, Anders, JPV, Arnett, JE, Ortega, DG, Schmidt, RJ, Johnson, GO, Natarajan, SK, and Housh, TJ. Effects of high-intensity, eccentric-only muscle actions on serum biomarkers of collagen degradation and synthesis. J Strength Cond Res 37(9): 1729-1737, 2023-The purpose of this study was to examine the effects of high-intensity, eccentric-only muscle actions of the leg extensors on (a) serum biomarkers of collagen degradation (hydroxyproline [HYP] and C-terminal telopeptide of type I collagen [C1M]) and synthesis (pro-c1α1) and (b) the time course of changes in maximal voluntary isometric contraction (MVIC) and ratings of muscle soreness after the eccentric-only exercise bout. Twenty-five recreationally active men (mean ± SD: age = 21.2 ± 2.0 years) completed 5 sets of 10 bilateral, eccentric-only dynamic constant external resistance muscle actions of the leg extensors at a load of 110% of their concentric leg extension 1 repetition maximum. Analysis of variances (p < 0.05) and a priori planned pairwise comparisons using Bonferroni corrected (p < 0.0167) paired t tests were used to examine mean changes in blood biomarkers from baseline to 48 hours postexercise as well as in MVIC and soreness ratings immediately, 24 hours, and 48 hours postexercise. There were increases in HYP (3.41 ± 2.37 to 12.37 ± 8.11 µg·ml-1; p < 0.001) and C1M (2.50 ± 1.05 to 5.64 ± 4.89 µg·L-1; p = 0.003) from preexercise to 48 hours postexercise, but no change in pro-c1α1. Maximal voluntary isometric contraction declined immediately after the exercise bout (450.44 ± 72.80 to 424.48 ± 66.67 N·m; p = 0.002) but recovered 24 hours later, whereas soreness was elevated immediately (6.56 ± 1.58; p < 0.001), 24 hours (3.52 ± 1.53; p < 0.001), and 48 hours (2.60 ± 1.32; p = 0.001) postexercise. The eccentric-only exercise bout induced increases in collagen degradation but had no effect on collagen synthesis. These findings provide information for clinicians to consider when prescribing exercise after an acute injury or surgery.


Assuntos
Exercício Físico , Mialgia , Masculino , Humanos , Adulto Jovem , Adulto , Biomarcadores , Colágeno , Músculos
2.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054892

RESUMO

Omega-3 and omega-6 fatty acids are important for neonatal development and health. One mechanism by which omega-3 and omega-6 fatty acids exert their effects is through their metabolism into oxylipins and specialized pro-resolving mediators. However, the influence of oxylipins on fetal growth is not well understood. Therefore, the objective of this study was to identify oxylipins present in maternal and umbilical cord plasma and investigate their relationship with infant growth. Liquid chromatography-tandem mass spectrometry was used to quantify oxylipin levels in plasma collected at the time of delivery. Spearman's correlations highlighted significant correlations between metabolite levels and infant growth. They were then adjusted for maternal obesity (normal body mass index (BMI: ≤30 kg/m2) vs. obese BMI (>30 kg/m2) and smoking status (never vs. current/former smoker) using linear regression modeling. A p-value < 0.05 was considered statistically significant. Our study demonstrated a diverse panel of oxylipins from the lipoxygenase pathway present at the time of delivery. In addition, both omega-3 and omega-6 oxylipins demonstrated potential influences on the birth length and weight percentiles. The oxylipins present during pregnancy may influence fetal growth and development, suggesting potential metabolites to be used as biomarkers for infant outcomes.


Assuntos
Lipoxigenases/metabolismo , Obesidade/metabolismo , Oxilipinas/sangue , Cordão Umbilical/metabolismo , Adulto , Cromatografia Líquida , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Recém-Nascido , Obesidade/sangue , Oxilipinas/análise , Oxilipinas/metabolismo , Gravidez , Espectrometria de Massas em Tandem
3.
Pediatr Res ; 90(2): 436-443, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293682

RESUMO

BACKGROUND: Perinatal inflammation adversely affects health. Therefore, aims of this IRB-approved study are: (1) compare inflammatory compounds within and between maternal and umbilical cord blood samples at the time of delivery, (2) assess relationships between inflammatory compounds in maternal and cord blood with birth characteristics/outcomes, and (3) assess relationships between blood and placental fat-soluble nutrients with blood levels of individual inflammatory compounds. METHODS: Mother-infant dyads were enrolled (n = 152) for collection of birth data and biological samples of maternal blood, umbilical cord blood, and placental tissue. Nutrient levels included: lutein + zeaxanthin; lycopene; α-, ß-carotene; ß-cryptoxanthin; retinol; α-, γ-, δ-tocopherol. Inflammatory compounds included: tumor necrosis factor-α, superoxide dismutase, interleukins (IL) 1ß, 2, 6, 8, 10. RESULTS: Median inflammatory compound levels were 1.2-2.3 times higher in cord vs. maternal blood, except IL2 (1.3 times lower). Multiple significant correlations existed between maternal vs. infant inflammatory compounds (range of r = 0.22-0.48). While relationships existed with blood nutrient levels, the most significant were identified in placenta where all nutrients (except δ-tocopherol) exhibited relationships with inflammatory compounds. Relationships between anti-inflammatory nutrients and proinflammatory compounds were primarily inverse. CONCLUSION: Inflammation is strongly correlated between mother-infant dyads. Fat-soluble nutrients have relationships with inflammatory compounds, suggesting nutrition is a modifiable factor. IMPACT: Mother and newborn inflammation status are strongly interrelated. Levels of fat-soluble nutrients in blood, but especially placenta, are associated with blood levels of proinflammatory and anti-inflammatory compounds in both mother and newborn infant. As fat-soluble nutrient levels are associated with blood inflammatory compounds, nutrition is a modifiable factor to modulate inflammation and improve perinatal outcomes.


Assuntos
Sangue Fetal/química , Mediadores da Inflamação/sangue , Nutrientes/sangue , Parto/sangue , Placenta/química , Biomarcadores/sangue , Estudos Transversais , Feminino , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Lipídeos/química , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Estado Nutricional , Gravidez , Solubilidade
4.
Int J Mol Sci ; 20(18)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500240

RESUMO

Omega-3 fatty acids are important to pregnancy and neonatal development and health. One mechanism by which omega-3 fatty acids exert their protective effects is through serving as substrates for the generation of specialized pro-resolving lipid mediators (SPM) that potently limit and resolve inflammatory processes. We recently identified that SPM levels are increased in maternal blood at delivery as compared to umbilical cord blood, suggesting the placenta as a potential site of action for maternal SPM. To explore this hypothesis, we obtained human placental samples and stained for the SPM resolvin D2 (RvD2) receptor GPR18 via immunohistochemistry. In so doing, we identified GPR18 expression in placental vascular smooth muscle and extravillous trophoblasts of the placental tissues. Using in vitro culturing, we confirmed expression of GPR18 in these cell types and further identified that stimulation with RvD2 led to significantly altered responsiveness (cytoskeletal changes and pro-inflammatory cytokine production) to lipopolysaccharide inflammatory stimulation in human umbilical artery smooth muscle cells and placental trophoblasts. Taken together, these findings establish a role for SPM actions in human placental tissue.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Músculo Liso Vascular/citologia , Receptores Acoplados a Proteínas G/genética , Trofoblastos/citologia , Adulto , Células Cultivadas , Ácidos Graxos Ômega-3/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Idade Materna , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Placenta/citologia , Placenta/efeitos dos fármacos , Placenta/metabolismo , Gravidez , Receptores Acoplados a Proteínas G/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Adulto Jovem
5.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931684

RESUMO

Zika virus (ZIKV), a mosquito-transmitted flavivirus responsible for sporadic outbreaks of mild and febrile illness in Africa and Asia, reemerged in the last decade causing serious human diseases, including microcephaly, congenital malformations, and Guillain-Barré syndrome. Although genomic and phylogenetic analyses suggest that genetic evolution may have led to the enhanced virulence of ZIKV, experimental evidence supporting the role of specific genetic changes in virulence is currently lacking. One sequence motif, VNDT, containing an N-linked glycosylation site in the envelope (E) protein, is polymorphic; it is absent in many of the African isolates but present in all isolates from the recent outbreaks. In the present study, we investigated the roles of this sequence motif and glycosylation of the E protein in the pathogenicity of ZIKV. We first constructed a stable full-length cDNA clone of ZIKV in a novel linear vector from which infectious virus was recovered. The recombinant ZIKV generated from the infectious clone, which contains the VNDT motif, is highly pathogenic and causes lethality in a mouse model. In contrast, recombinant viruses from which the VNDT motif is deleted or in which the N-linked glycosylation site is mutated by single-amino-acid substitution are highly attenuated and nonlethal. The mutant viruses replicate poorly in the brains of infected mice when inoculated subcutaneously but replicate well following intracranial inoculation. Our findings provide the first evidence that N-linked glycosylation of the E protein is an important determinant of ZIKV virulence and neuroinvasion.IMPORTANCE The recent emergence of Zika virus (ZIKV) in the Americas has caused major worldwide public health concern. The virus appears to have gained significant pathogenicity, causing serious human diseases, including microcephaly and Guillain-Barré syndrome. The factors responsible for the emergence of pathogenic ZIKV are not understood at this time, although genetic changes have been shown to facilitate virus transmission. All isolates from the recent outbreaks contain an N-linked glycosylation site within the viral envelope (E) protein, whereas many isolates of the African lineage virus lack this site. To elucidate the functional significance of glycosylation in ZIKV pathogenicity, recombinant ZIKVs from infectious clones with or without the glycan on the E protein were generated. ZIKVs lacking the glycan were highly attenuated for the ability to cause mortality in a mouse model and were severely compromised for neuroinvasion. Our studies suggest glycosylation of the E protein is an important factor contributing to ZIKV pathogenicity.


Assuntos
Encéfalo/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Motivos de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Evolução Molecular , Glicosilação , Humanos , Camundongos , Mosquitos Vetores , Mutação , Filogenia , Células Vero , Fatores de Virulência/química , Fatores de Virulência/genética , Zika virus/genética , Zika virus/metabolismo
6.
RNA Biol ; 15(3): 391-403, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29286255

RESUMO

MicroRNA dysregulation is a common feature of cancer and due to the promiscuity of microRNA binding this can result in a wide array of genes whose expression is altered. miR-106b is an oncomiR overexpressed in cholangiocarcinoma and its upregulation in this and other cancers often leads to repression of anti-tumorigenic targets. The goal of this study was to identify the miR-106b-regulated gene landscape in cholangiocarcinoma cells using a genome-wide, unbiased mRNA analysis. Through RNA-Seq we found 112 mRNAs significantly repressed by miR-106b. The majority of these genes contain the specific miR-106b seed-binding site. We have validated 11 genes from this set at the mRNA level and demonstrated regulation by miR-106b of 7 proteins. Combined analysis of our miR-106b-regulated mRNA data set plus published reports indicate that miR-106b binding is anchored by G:C pairing in and near the seed. Novel targets Kruppel-like factor 2 (KLF2) and KLF6 were verified both at the mRNA and at the protein level. Further investigation showed regulation of four other KLF family members by miR-106b. We have discovered coordinated repression of multiple members of the KLF family by miR-106b that may play a role in cholangiocarcinoma tumor biology.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Regulação para Baixo , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/química , Fatores de Transcrição Kruppel-Like/metabolismo , Ratos , Análise de Sequência de RNA/métodos
7.
Int J Mol Sci ; 19(1)2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361796

RESUMO

Acute fatty liver of pregnancy (AFLP), a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C) in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD). The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet ß-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency.


Assuntos
Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Complicações na Gravidez/etiologia , Complicações na Gravidez/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Acil-CoA Desidrogenase de Cadeia Longa/genética , Fígado Gorduroso/patologia , Feminino , Humanos , Metabolismo dos Lipídeos , Erros Inatos do Metabolismo Lipídico/complicações , Exposição Materna , Mutação , Oxirredução , Estresse Oxidativo , Fenótipo , Gravidez , Complicações na Gravidez/patologia
8.
J Lipid Res ; 58(5): 866-875, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28250026

RESUMO

Nonalcoholic steatohepatitis (NASH) patients have elevated plasma saturated free fatty acid levels. These toxic fatty acids can induce liver cell death and our recent results demonstrated that the biliary epithelium may be susceptible to lipotoxicity. Here, we explored the molecular mechanisms of cholangiocyte lipoapoptosis in cell culture and in an animal model of NASH. Treatment of cholangiocytes with palmitate (PA) showed increased caspase 3/7 activity and increased levels of cleaved poly (ADP-ribose) polymerase and cleaved caspase 3, demonstrating cholangiocyte lipoapoptosis. Interestingly, treatment with PA significantly increased the levels of microRNA miR-34a, a pro-apoptotic microRNA known to be elevated in NASH. PA induction of miR-34a was abolished in cholangiocytes transduced with forkhead family of transcription factor class O (FoxO)3 shRNA, demonstrating that FoxO3 activation is upstream of miR-34a and suggesting that FoxO3 is a novel transcriptional regulator of miR-34a. Further, anti-miR-34a protected cholangiocytes from PA-induced lipoapoptosis. Direct and indirect targets of miR-34a, such as SIRT1, receptor tyrosine kinase (MET), Kruppel-like factor 4, fibroblast growth factor receptor (FGFR)1, and FGFR4, were all decreased in PA-treated cholangiocytes. SIRT1 and MET were partially rescued by a miR-34a antagonist. Cholangiocyte apoptosis and miR-34a were dramatically increased in the liver of mice with early histologic features of NASH. Our study provides evidence for the pro-apoptotic role of miR-34a in PA-induced cholangiocyte lipoapoptosis in culture and in the liver.


Assuntos
Apoptose/efeitos dos fármacos , Ductos Biliares/citologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , MicroRNAs/genética , Palmitatos/farmacologia , Animais , Linhagem Celular , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos C57BL
9.
J Biol Chem ; 291(39): 20551-62, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27489163

RESUMO

Emerging evidence suggests that n-3 polyunsaturated fatty acids (PUFA) promote brown adipose tissue thermogenesis. However, the underlying mechanisms remain elusive. Here, we hypothesize that n-3 PUFA promotes brown adipogenesis by modulating miRNAs. To test this hypothesis, murine brown preadipocytes were induced to differentiate the fatty acids of palmitic, oleate, or eicosapentaenoic acid (EPA). The increases of brown-specific signature genes and oxygen consumption rate by EPA were concurrent with up-regulation of miR-30b and 378 but not by oleate or palmitic acid. Next, we hypothesize that free fatty acid receptor 4 (Ffar4), a functional receptor for n-3 PUFA, modulates miR-30b and 378. Treatment of Ffar4 agonist (GW9508) recapitulated the thermogenic activation of EPA by increasing oxygen consumption rate, brown-specific marker genes, and miR-30b and 378, which were abrogated in Ffar4-silenced cells. Intriguingly, addition of the miR-30b mimic was unable to restore EPA-induced Ucp1 expression in Ffar4-depleted cells, implicating that Ffar4 signaling activity is required for up-regulating the brown adipogenic program. Moreover, blockage of miR-30b or 378 by locked nucleic acid inhibitors significantly attenuated Ffar4 as well as brown-specific signature gene expression, suggesting the signaling interplay between Ffar4 and miR-30b/378. The association between miR-30b/378 and brown thermogenesis was also confirmed in fish oil-fed C57/BL6 mice. Interestingly, the Ffar4 agonism-mediated signaling axis of Ffar4-miR-30b/378-Ucp1 was linked with an elevation of cAMP in brown adipocytes, similar to cold-exposed or fish oil-fed brown fat. Taken together, our work identifies a novel function of Ffar4 in modulating brown adipogenesis partly through a mechanism involving cAMP activation and up-regulation of miR-30b and miR-378.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ácido Eicosapentaenoico/farmacologia , MicroRNAs/biossíntese , Receptores Acoplados a Proteínas G/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Temperatura Baixa , AMP Cíclico/metabolismo , Feminino , Masculino , Metilaminas/farmacologia , Camundongos , Propionatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo , Regulação para Cima/fisiologia
10.
J Cell Biochem ; 118(7): 1678-1688, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27922192

RESUMO

Pipecolate, an intermediate of the lysine catabolic pathway, is oxidized to Δ1 -piperideine-6-carboxylate (P6C) by the flavoenzyme l-pipecolate oxidase (PIPOX). P6C spontaneously hydrolyzes to generate α-aminoadipate semialdehyde, which is then converted into α-aminoadipate acid by α-aminoadipatesemialdehyde dehydrogenase. l-pipecolate was previously reported to protect mammalian cells against oxidative stress. Here, we examined whether PIPOX is involved in the mechanism of pipecolate stress protection. Knockdown of PIPOX by small interference RNA abolished pipecolate protection against hydrogen peroxide-induced cell death in HEK293 cells suggesting a critical role for PIPOX. Subcellular fractionation analysis showed that PIPOX is localized in the mitochondria of HEK293 cells consistent with its role in lysine catabolism. Signaling pathways potentially involved in pipecolate protection were explored by treating cells with small molecule inhibitors. Inhibition of both mTORC1 and mTORC2 kinase complexes or inhibition of Akt kinase alone blocked pipecolate protection suggesting the involvement of these signaling pathways. Phosphorylation of the Akt downstream target, forkhead transcription factor O3 (FoxO3), was also significantly increased in cells treated with pipecolate, further implicating Akt in the protective mechanism and revealing FoxO3 inhibition as a potentially key step. The results presented here demonstrate that pipecolate metabolism can influence cell signaling during oxidative stress to promote cell survival and suggest that the mechanism of pipecolate protection parallels that of proline, which is also metabolized in the mitochondria. J. Cell. Biochem. 118: 1678-1688, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Peróxido de Hidrogênio/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Sobrevivência Celular/fisiologia , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Células HEK293/metabolismo , Humanos , NADP/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Via de Pentose Fosfato , Ácidos Pipecólicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Sarcosina Oxidase/genética , Sarcosina Oxidase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G930-40, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27056722

RESUMO

Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1ß, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.


Assuntos
Acetaldeído/metabolismo , Apoptose , Hepacivirus/fisiologia , Hepatócitos/metabolismo , Replicação Viral , Linhagem Celular , Células Cultivadas , Hepacivirus/patogenicidade , Hepatócitos/virologia , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
BMC Gastroenterol ; 16: 27, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26924554

RESUMO

BACKGROUND: Non-alcoholic and alcoholic fatty liver disease (NAFLD and AFLD, respectively) are major health problems, as patients with either condition can progress to hepatitis, fibrosis, and cirrhosis. Although histologically similar, key differences likely exist in these two models. For example, altered content of several vesicle trafficking proteins have been identified in AFLD, but their content in NAFLD is unknown. In this study, we compared select parameters in NAFLD and AFLD in a rat model. METHODS: We fed either Lieber- DeCarli liquid control or alcohol-containing (35 % as calories) diet (AFLD model) or lean or high-fat (12 or 60 % derived from fat, respectively) pellets (NAFLD model) for 8-10 weeks, n = 8 in each model. Serum, hepatocytes and liver tissue were analyzed. Liver injury markers were measured in serum, triglyceride content and endocytosis (binding and internalization of (125)I- asialoorosomucoid) was measured in isolated hepatocytes, and content of selected trafficking proteins (Rab3D, Rab7 and Rab18) were determined in whole liver tissue. RESULTS: Although liver injury markers and triglyceride content were similar in both models, binding and internalization of (125)I- asialoorosomucoid was significantly impaired in the hepatocytes from AFLD, but not NAFLD, animals. In addition, protein content of the asialoglycoprotein receptor (ASGPR) and three trafficking proteins, Rab3D, Rab7and Rab18, were significantly decreased after alcohol, but not high-fat feeding. Levels of protein carbonylation, amount of glutathione stores, and lipid peroxidation were similar irrespective of the insult to the livers that resulted in fatty liver. CONCLUSION: Impairments in protein trafficking in AFLD are likely a direct result of alcohol administration, and not a function of fatty liver.


Assuntos
Endocitose/fisiologia , Fígado Gorduroso Alcoólico/metabolismo , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Mensageiro/metabolismo , Vesículas Transportadoras/metabolismo , Alanina Transaminase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Ácidos e Sais Biliares/metabolismo , Western Blotting , Colesterol/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Etanol/toxicidade , Fígado Gorduroso Alcoólico/etiologia , Imuno-Histoquímica , Proteínas de Membrana/metabolismo , Perilipina-2 , Ratos , Albumina Sérica/metabolismo , Solventes/toxicidade , Triglicerídeos/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
13.
Hepatology ; 60(6): 1942-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24753158

RESUMO

UNLABELLED: Recent studies have identified a cholestatic variant of nonalcoholic fatty liver disease (NAFLD) with portal inflammation and ductular reaction. Based on reports of biliary damage, as well as increased circulating free fatty acids (FFAs) in NAFLD, we hypothesized the involvement of cholangiocyte lipoapoptosis as a mechanism of cellular injury. Here, we demonstrate that the saturated FFAs palmitate and stearate induced robust and rapid cell death in cholangiocytes. Palmitate and stearate induced cholangiocyte lipoapoptosis in a concentration-dependent manner in multiple cholangiocyte-derived cell lines. The mechanism of lipoapoptosis relied on the activation of caspase 3/7 activity. There was also a significant up-regulation of the proapoptotic BH3-containing protein, PUMA. In addition, palmitate-induced cholangiocyte lipoapoptosis involved a time-dependent increase in the nuclear localization of forkhead family of transcription factor 3 (FoxO3). We show evidence for posttranslational modification of FoxO3, including early (6 hours) deacetylation and dephosphorylation that coincide with localization of FoxO3 in the nuclear compartment. By 16 hours, nuclear FoxO3 is both phosphorylated and acetylated. Knockdown studies confirmed that FoxO3 and its downstream target, PUMA, were critical for palmitate- and stearate-induced cholangiocyte lipoapoptosis. Interestingly, cultured cholangiocyte-derived cells did not accumulate appreciable amounts of neutral lipid upon FFA treatment. CONCLUSION: Our data show that the saturated FFAs palmitate and stearate induced cholangiocyte lipoapoptosis by way of caspase activation, nuclear translocation of FoxO3, and increased proapoptotic PUMA expression. These results suggest that cholangiocyte injury may occur through lipoapoptosis in NAFLD and nonalcoholic steatohepatitis patients.


Assuntos
Apoptose , Ductos Biliares Intra-Hepáticos/enzimologia , Ácidos Graxos não Esterificados/efeitos adversos , Fígado Gorduroso/etiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Fígado Gorduroso/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Humanos , Palmitatos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
14.
PLoS One ; 19(2): e0297558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381745

RESUMO

OBJECTIVE: The gastrointestinal microbiome in preterm infants exhibits significant influence on optimal outcomes-with dysbiosis shown to substantially increase the risk of the life-threatening necrotizing enterocolitis. Iron is a vital nutrient especially during the perinatal window of rapid hemoglobin production, tissue growth, and foundational neurodevelopment. However, excess colonic iron exhibits potent oxidation capacity and alters the gut microbiome-potentially facilitating the proliferation of pathological bacterial strains. Breastfed preterm infants routinely receive iron supplementation starting 14 days after delivery and are highly vulnerable to morbidities associated with gastrointestinal dysbiosis. Therefore, we set out to determine if routine iron supplementation alters the preterm gut microbiome. METHODS: After IRB approval, we collected stool specimens from 14 infants born <34 weeks gestation in the first, second, and fourth week of life to assess gut microbiome composition via 16S rRNA sequencing. RESULTS: We observed no significant differences in either phyla or key genera relative abundance between pre- and post-iron timepoints. We observed notable shifts in infant microbiome composition based on season of delivery. CONCLUSION: Though no obvious indication of iron-induced dysbiosis was observed in this unique study in the setting of prematurity, further investigation in a larger sample is warranted to fully understand iron's impact on the gastrointestinal milieu.


Assuntos
Microbioma Gastrointestinal , Recém-Nascido Prematuro , Lactente , Recém-Nascido , Humanos , Projetos Piloto , Disbiose , Ferro , RNA Ribossômico 16S/genética , Suplementos Nutricionais , Fezes/microbiologia
15.
Cell Death Dis ; 15(1): 31, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212315

RESUMO

Maternal obesity increases the risk of childhood obesity and programs the offspring to develop metabolic syndrome later in their life. Palmitate is the predominant saturated free fatty acid (FFA) that is transported across the placenta to the fetus. We have recently shown that saturated FFA in the maternal circulation as a result of increased adipose tissue lipolysis in third trimester of pregnancy induces trophoblast lipoapoptosis. Here, we hypothesized that palmitate induces integrated stress response by activating mitogen-activated protein kinases (MAPKs), endoplasmic reticulum (ER) stress and granular stress and lipoapoptosis in trophoblasts. Choriocarcinoma-derived third-trimester placental trophoblast-like cells (JEG-3 and JAR) referred as trophoblasts were exposed to various concentrations of palmitate (PA). Apoptosis was assessed by nuclear morphological changes and caspase 3/7 activity. Immunoblot and immunofluorescence analysis was performed to measure the activation of MAPKs, ER stress and granular stress response pathways. Trophoblasts exposed to pathophysiological concentrations of PA showed a concentration-dependent increase in trophoblast lipoapoptosis. PA induces a caspase-dependent trophoblast lipoapoptosis. Further, PA induces MAPK activation (JNK and ERK) via phosphorylation, and activation of ER stress as evidenced by an increased phosphorylation eIF2α & IRE1α. PA also induces the activation of stress granules formation. Two pro-apoptotic transcriptional mediators of PA-induced trophoblast lipoapoptosis, CHOP and FoxO3 have increased nuclear translocation. Mechanistically, PA-induced JNK is critical for trophoblast lipoapoptosis. However, PA-induced activation of ERK and stress granule formation were shown to be cell survival signals to combat subcellular stress due to PA exposure. In conclusion, PA induces the activation of integrated stress responses, among which small molecule inhibition of JNK demonstrated that activation of JNK is critical for PA-induced trophoblast lipoapoptosis and small molecule activation of stress granule formation significantly prevents PA-induced trophoblast lipoapoptosis.


Assuntos
Palmitatos , Obesidade Infantil , Criança , Feminino , Humanos , Gravidez , Palmitatos/farmacologia , Palmitatos/metabolismo , Linhagem Celular Tumoral , Endorribonucleases , Placenta/metabolismo , Proteínas Serina-Treonina Quinases , Apoptose , Proteínas Quinases Ativadas por Mitógeno , Estresse do Retículo Endoplasmático , Trofoblastos/metabolismo
16.
Clin Nutr ESPEN ; 60: 223-233, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479914

RESUMO

BACKGROUND & AIMS: Inflammation is necessary for a healthy pregnancy. However, unregulated or excessive inflammation during pregnancy is associated with severe maternal and infant morbidities, such as pre-eclampsia, abnormal infant neurodevelopment, or preterm birth. Inflammation is regulated in part by the bioactive metabolites of omega-6 (n-6) and omega-3 (n-3) fatty acids (FAs). N-6 FAs have been shown to promote pro-inflammatory cytokine environments in adults, while n-3 FAs have been shown to contribute to the resolution of inflammation; however, how these metabolites affect maternal and infant inflammation is still uncertain. The objective of this study was to predict the influence of n-6 and n-3 FA metabolites on inflammatory biomarkers in maternal and umbilical cord plasma at the time of delivery. METHODS: Inflammatory biomarkers (IL-1ß, IL-2, IL-6, IL-8, IL-10, and TNFα) for maternal and umbilical cord plasma samples in 39 maternal-infant dyads were analyzed via multi-analyte bead array. Metabolites of n-6 FAs (arachidonic acid and linoleic acid) and n-3 FAs (eicosapentaenoic acid and docosahexaenoic acid) were assayed via liquid chromatography-mass spectrometry. Linear regression models assessed relationships between maternal and infant inflammatory markers and metabolite plasma concentrations. RESULTS: Increased plasma concentrations of maternal n-6 metabolites were predictive of elevated pro-inflammatory cytokine concentrations in mothers; similarly, higher plasma concentrations of umbilical cord n-6 FA metabolites were predictive of elevated pro-inflammatory cytokine concentrations in infants. Higher plasma concentrations of maternal n-6 FA metabolites were also predictive of elevated pro-inflammatory cytokines in infants, suggesting that maternal n-6 FA status has an intergenerational impact on the inflammatory status of the infant. In contrast, maternal and cord plasma concentrations of n-3 FA metabolites had a mixed effect on inflammatory status in mothers and infants, which may be due to the inadequate maternal dietary intake of n-3 FAs in our study population. CONCLUSIONS: Our results reveal that maternal FA status may have an intergenerational impact on the inflammatory status of the infant. Additional research is needed to identify how dietary interventions that modify maternal FA intake prior to or during pregnancy may impact maternal and infant inflammatory status and associated long-term health outcomes.


Assuntos
Ácidos Graxos Ômega-3 , Nascimento Prematuro , Lactente , Gravidez , Adulto , Feminino , Recém-Nascido , Humanos , Citocinas , Ácidos Graxos Ômega-6 , Inflamação , Biomarcadores
17.
Biomedicines ; 11(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672679

RESUMO

Normal pregnancy relies on inflammation for implantation, placentation, and parturition, but uncontrolled inflammation can lead to poor maternal and infant outcomes. Maternal diet is one modifiable factor that can impact inflammation. Omega-3 and -6 fatty acids obtained through the diet are metabolized into bioactive compounds that effect inflammation. Recent evidence has shown that the downstream products of omega-3 and -6 fatty acids may influence physiology during pregnancy. In this review, the current knowledge relating to omega-3 and omega-6 metabolites during pregnancy will be summarized.

18.
J Biol Chem ; 286(38): 33203-12, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21768092

RESUMO

The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteine-rich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15 KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation. We suggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency.


Assuntos
Catarata/metabolismo , Catarata/patologia , Homeostase , Selenoproteínas/deficiência , Selenoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Cristalino/embriologia , Cristalino/metabolismo , Cristalino/patologia , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Peso Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Células NIH 3T3 , Oxirredução , Estresse Oxidativo , Próstata/metabolismo , Próstata/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Selenoproteína P/metabolismo , Selenoproteínas/química , Selenoproteínas/genética , Resposta a Proteínas não Dobradas
19.
Nutrients ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615782

RESUMO

Zika virus (ZIKV) is a Flavivirus from the Flaviviridae family and a positive-sense single strand RNA virus. ZIKV infection can cause a mild infection to the mother but can be vertically transmitted to the developing fetus, causing congenital anomalies. The prevalence of ZIKV infections was relatively insignificant with sporadic outbreaks in the Asian and African continents until 2006. However, recent epidemic in the Caribbean showed significant increased incidence of Congenital Zika Syndrome. ZIKV infection results in placental pathology which plays a crucial role in disease transmission from mother to fetus. Currently, there is no Food and Drug Administration (FDA) approved vaccine or therapeutic drug against ZIKV. This review article summarizes the recent advances on ZIKV transmission and diagnosis and reviews nutraceuticals which can protect against the ZIKV infection. Further, we have reviewed recent advances related to the novel therapeutic nutrient molecules that have been shown to possess activity against Zika virus infected cells. We also review the mechanism of ZIKV-induced endoplasmic reticulum and apoptosis and the protective role of palmitoleate (nutrient molecule) against ZIKV-induced ER stress and apoptosis in the placental trophoblasts.


Assuntos
Infecção por Zika virus , Zika virus , Feminino , Gravidez , Humanos , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/epidemiologia , Zika virus/genética , Placenta/patologia , Trofoblastos/patologia
20.
Antioxidants (Basel) ; 11(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453374

RESUMO

Arsenic, a naturally occurring metalloid derived from the environment, has been studied worldwide for its causative effects in various cancers. However, the effects of arsenic toxicity on the development and progression of metabolic syndrome, including obesity and diabetes, has received less attention. Many studies suggest that metabolic dysfunction and autophagy dysregulation of adipose and muscle tissues are closely related to the development of metabolic disease. In the USA, arsenic contamination has been reported in some ground water, soil and grain samples in major agricultural regions, but the effects on adipose and muscle tissue metabolism and autophagy have not been investigated much. Here, we highlight arsenic toxicity according to the species, dose and exposure time and the effects on adipose and muscle tissue metabolism and autophagy. Historically, arsenic was used as both a poison and medicine, depending on the dose and treatment time. In the modern era, arsenic intoxication has significantly increased due to exposure from water, soil and food, which could be a contributing factor in the development and progression of metabolic disease. From this review, a better understanding of the pathogenic mechanisms by which arsenic alters metabolism and autophagy regulation could become a cornerstone leading to the development of therapeutic strategies against arsenic-induced toxicity and metabolic disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA