Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2017: 3260289, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28883687

RESUMO

Porcine infections are currently not the state-of-the-art model to study human diseases. Nevertheless, the course of human and porcine toxoplasmosis is much more comparable than that of human and murine toxoplasmosis. For example, severity of infection, transplacental transmission, and interferon-gamma-induced antiparasitic effector mechanisms are similar in pigs and humans. In addition, the severe immunosuppression during acute infection described in mice does not occur in the experimentally infected ones. Thus, we hypothesise that porcine Toxoplasma gondii infection data are more representative for human toxoplasmosis. We therefore suggest that the animal model chosen must be critically evaluated for its assignability to human diseases.


Assuntos
Toxoplasma/patogenicidade , Toxoplasmose/parasitologia , Animais , Western Blotting , Modelos Animais de Doenças , Humanos , Interferon gama/metabolismo , Suínos
2.
Mediators Inflamm ; 2014: 898630, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782599

RESUMO

Human mesenchymal stromal cells (MSC) possess immunosuppressive and antimicrobial effects that are partly mediated by the tryptophan-catabolizing enzyme indoleamine-2,3-dioxygenase (IDO). Therefore MSC represent a promising novel cellular immunosuppressant which has the potential to control steroid-refractory acute graft versus host disease (GvHD). In addition, MSC are capable of reducing the risk of infection in patients after haematopoietic stem cell transplantation (HST). Recent data indicate that signals from the microenvironment including those from microbes may modulate MSC effector functions. As Cytomegalovirus (CMV) represents a prominent pathogen in immunocompromised hosts, especially in patients following HST, we investigated the impact of CMV infection on MSC-mediated effects on the immune system. We demonstrate that CMV-infected MSC lose their cytokine-induced immunosuppressive capacity and are no longer able to restrict microbial growth. IDO expression is substantially impaired following CMV infection of MSC and this interaction critically depends on intact virus and the number of MSC as well as the viral load. Since overt CMV infection may undermine the clinical efficacy of MSC in the treatment of GvHD in transplant patients, we recommend that patients scheduled for MSC therapy should undergo thorough evaluation for an active CMV infection and receive CMV-directed antiviral therapy prior to the administration of MSC.


Assuntos
Infecções por Citomegalovirus/imunologia , Interações Hospedeiro-Patógeno , Células-Tronco Mesenquimais/citologia , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Citomegalovirus , Infecções por Citomegalovirus/fisiopatologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Hibridomas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/química , Células-Tronco Mesenquimais/virologia , Staphylococcus aureus , Linfócitos T/citologia , Triptofano/química , Carga Viral
3.
Cells ; 12(13)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37443814

RESUMO

Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.


Assuntos
Células Endoteliais , Insuficiência Cardíaca , Humanos , Células Endoteliais/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA