Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 72(1): 152-161.e7, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30174294

RESUMO

Infection with Mycobacterium tuberculosis continues to cause substantial human mortality, in part because of the emergence of antimicrobial resistance. Antimicrobial resistance in tuberculosis is solely the result of chromosomal mutations that modify drug activators or targets, yet the mechanisms controlling the mycobacterial DNA-damage response (DDR) remain incompletely defined. Here, we identify RecA serine 207 as a multifunctional signaling hub that controls the DDR in mycobacteria. RecA S207 is phosphorylated after DNA damage, which suppresses the emergence of antibiotic resistance by selectively inhibiting the LexA coprotease function of RecA without affecting its ATPase or strand exchange functions. Additionally, RecA associates with the cytoplasmic membrane during the mycobacterial DDR, where cardiolipin can specifically inhibit the LexA coprotease function of unmodified, but not S207 phosphorylated, RecA. These findings reveal that RecA S207 controls mutagenesis and antibiotic resistance in mycobacteria through phosphorylation and cardiolipin-mediated inhibition of RecA coprotease function.


Assuntos
Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Recombinases Rec A/genética , Tuberculose/genética , Adenosina Trifosfatases/genética , Cardiolipinas/genética , Dano ao DNA/genética , Humanos , Mutagênese/genética , Mycobacterium tuberculosis/patogenicidade , Fosforilação , Serina/genética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
2.
Nucleic Acids Res ; 49(22): 12805-12819, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871411

RESUMO

DNA repair systems allow microbes to survive in diverse environments that compromise chromosomal integrity. Pathogens such as Mycobacterium tuberculosis must contend with the genotoxic host environment, which generates the mutations that underlie antibiotic resistance. Mycobacteria encode the widely distributed SOS pathway, governed by the LexA repressor, but also encode PafBC, a positive regulator of the transcriptional DNA damage response (DDR). Although the transcriptional outputs of these systems have been characterized, their full functional division of labor in survival and mutagenesis is unknown. Here, we specifically ablate the PafBC or SOS pathways, alone and in combination, and test their relative contributions to repair. We find that SOS and PafBC have both distinct and overlapping roles that depend on the type of DNA damage. Most notably, we find that quinolone antibiotics and replication fork perturbation are inducers of the PafBC pathway, and that chromosomal mutagenesis is codependent on PafBC and SOS, through shared regulation of the DnaE2/ImuA/B mutasome. These studies define the complex transcriptional regulatory network of the DDR in mycobacteria and provide new insight into the regulatory mechanisms controlling the genesis of antibiotic resistance in M. tuberculosis.


Assuntos
Proteínas de Bactérias/genética , Reparo do DNA/genética , Mutagênese , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Resposta SOS em Genética/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , Dano ao DNA , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Especificidade da Espécie
3.
Mol Microbiol ; 100(4): 656-74, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26817626

RESUMO

The Mycobacterium tuberculosis genome possesses homologues of the ruvC and yqgF genes that encode putative Holliday junction (HJ) resolvases. However, their gene expression profiles and enzymatic properties have not been experimentally defined. Here we report that expression of ruvC and yqgF is induced in response to DNA damage. Protein-DNA interaction assays with purified M. tuberculosis RuvC (MtRuvC) and YqgF (MtRuvX) revealed that both associate preferentially with HJ DNA, albeit with differing affinities. Although both MtRuvC and MtRuvX cleaved HJ DNA in vitro, the latter displayed robust HJ resolution activity by symmetrically related, paired incisions. MtRuvX showed a higher binding affinity for the HJ structure over other branched recombination and replication intermediates. An MtRuvX(D28N) mutation, eliminating one of the highly conserved catalytic residues in this class of endonucleases, dramatically reduced its ability to cleave HJ DNA. Furthermore, a unique cysteine (C38) fulfils a crucial role in HJ cleavage, consistent with disulfide-bond mediated dimerization being essential for MtRuvX activity. In contrast, E. coli YqgF is monomeric and exhibits no branched DNA binding or cleavage activity. These results fit with a functional modification of YqgF in M. tuberculosis so that it can act as a dimeric HJ resolvase analogous to that of RuvC.


Assuntos
DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resolvases de Junção Holliday/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Cisteína , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Genoma Bacteriano , Resolvases de Junção Holliday/genética , Mycobacterium tuberculosis/efeitos da radiação , Multimerização Proteica , Análise de Sequência de DNA , Especificidade por Substrato , Raios Ultravioleta
4.
J Antimicrob Chemother ; 69(7): 1834-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24722837

RESUMO

OBJECTIVES: In eubacteria, RecA is essential for recombinational DNA repair and for stalled replication forks to resume DNA synthesis. Recent work has implicated a role for RecA in the development of antibiotic resistance in pathogenic bacteria. Consequently, our goal is to identify and characterize small-molecule inhibitors that target RecA both in vitro and in vivo. METHODS: We employed ATPase, DNA strand exchange and LexA cleavage assays to elucidate the inhibitory effects of suramin on Mycobacterium tuberculosis RecA. To gain insights into the mechanism of suramin action, we directly visualized the structure of RecA nucleoprotein filaments by atomic force microscopy. To determine the specificity of suramin action in vivo, we investigated its effect on the SOS response by pull-down and western blot assays as well as for its antibacterial activity. RESULTS: We show that suramin is a potent inhibitor of DNA strand exchange and ATPase activities of bacterial RecA proteins with IC(50) values in the low micromolar range. Additional evidence shows that suramin inhibits RecA-catalysed proteolytic cleavage of the LexA repressor. The mechanism underlying such inhibitory actions of suramin involves its ability to disassemble RecA-single-stranded DNA filaments. Notably, suramin abolished ciprofloxacin-induced recA gene expression and the SOS response and augmented the bactericidal action of ciprofloxacin. CONCLUSIONS: Our findings suggest a strategy to chemically disrupt the vital processes controlled by RecA and hence the promise of small molecules for use against drug-susceptible as well as drug-resistant strains of M. tuberculosis for better infection control and the development of new therapies.


Assuntos
Antituberculosos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Recombinases Rec A/antagonistas & inibidores , Resposta SOS em Genética/efeitos dos fármacos , Suramina/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Descoberta de Drogas , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Inibidores de Proteases/metabolismo
5.
ACS Omega ; 9(11): 12515-12538, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524412

RESUMO

Cells are continually exposed to a multitude of internal and external stressors, which give rise to various types of DNA damage. To protect the integrity of their genetic material, cells are equipped with a repertoire of repair proteins that engage in various repair mechanisms, facilitated by intricate networks of protein-protein and protein-DNA interactions. Among these networks is the homologous recombination (HR) system, a molecular repair mechanism conserved in all three domains of life. On one hand, HR ensures high-fidelity, template-dependent DNA repair, while on the other hand, it results in the generation of combinatorial genetic variations through allelic exchange. Despite substantial progress in understanding this pathway in bacteria, yeast, and humans, several critical questions remain unanswered, including the molecular processes leading to the exchange of DNA segments, the coordination of protein binding, conformational switching during branch migration, and the resolution of Holliday Junctions (HJs). This Review delves into our current understanding of the HR pathway in bacteria, shedding light on the roles played by various proteins or their complexes at different stages of HR. In the first part of this Review, we provide a brief overview of the end resection processes and the strand-exchange reaction, offering a concise depiction of the mechanisms that culminate in the formation of HJs. In the latter half, we expound upon the alternative methods of branch migration and HJ resolution more comprehensively and holistically, considering the historical research timelines. Finally, when we consolidate our knowledge about HR within the broader context of genome replication and the emergence of resistant species, it becomes evident that the HR pathway is indispensable for the survival of bacteria in diverse ecological niches.

6.
J Biosci ; 40(1): 13-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25740138

RESUMO

Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the 'switch' residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M. smegmatis and E. coli, which exhibit concerted internal molecular mobility. The interspecies variability in the plasticity of the two mycobacterial proteins is particularly surprising as they have similar sequence and 3D structure. Details of the interactions of ligands with the protein, characterized in the structures reported here, could be useful for design of inhibitors against M. tuberculosis RecA.


Assuntos
Proteínas de Ligação a DNA/ultraestrutura , Mycobacterium tuberculosis/enzimologia , Recombinases Rec A/ultraestrutura , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Recombinases Rec A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA