Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(3): e1011295, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972295

RESUMO

Calcium (Ca2+), a ubiquitous second messenger, plays a crucial role in many cellular functions. Viruses often hijack Ca2+ signaling to facilitate viral processes such as entry, replication, assembly, and egress. Here, we report that infection by the swine arterivirus, porcine reproductive and respiratory syndrome virus (PRRSV), induces dysregulated Ca2+ homeostasis, subsequently activating calmodulin-dependent protein kinase-II (CaMKII) mediated autophagy, and thus fueling viral replication. Mechanically, PRRSV infection induces endoplasmic reticulum (ER) stress and forms a closed ER-plasma membrane (PM) contacts, resulting the opening of store operated calcium entry (SOCE) channel and causing the ER to take up extracellular Ca2+, which is then released into the cytoplasm by inositol trisphosphate receptor (IP3R) channel. Importantly, pharmacological inhibition of ER stress or CaMKII mediated autophagy blocks PRRSV replication. Notably, we show that PRRSV protein Nsp2 plays a dominant role in the PRRSV induced ER stress and autophagy, interacting with stromal interaction molecule 1 (STIM1) and the 78 kDa glucose-regulated protein 78 (GRP78). The interplay between PRRSV and cellular calcium signaling provides a novel potential approach to develop antivirals and therapeutics for the disease outbreaks.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Retículo Endoplasmático/metabolismo , Autofagia , Replicação Viral , Síndrome Respiratória e Reprodutiva Suína/metabolismo
2.
J Virol ; 97(4): e0018823, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039642

RESUMO

Stimulator of interferon (IFN) genes (STING) was recently pinpointed as an antiviral innate immune factor during the infection of RNA viruses. Porcine reproductive and respiratory syndrome virus (PRRSV), the swine arterivirus, is an enveloped RNA virus which has evolved many strategies to evade innate immunity. To date, the interactive network between PRRSV and STING remains to be fully established. Herein, we report that STING suppresses PRRSV replication through type I interferon signaling. However, PRRSV impedes STING trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus, leading to the decreased phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). Furthermore, PRRSV nonstructural protein 2 (Nsp2) colocalizes with STING, blocks STING translocation, and disrupts the STING-TBK1-IRF3 complex. Mechanistically, PRRSV Nsp2 retains STING at the ER by increasing the level of Ca2+ sensor stromal interaction molecule 1 (STIM1) protein. Functional analysis reveals that PRRSV Nsp2 deubiquitinates STIM1 by virtue of its papain-like protease 2 (PLP2) deubiquitinating (DUB) activity. Finally, we demonstrate that loss of STIM1 is associated with an elevated IFN response and restricts PRRSV replication. This work delineates the relationship between PRRSV infection and STING signaling and the importance of papain-like proteases (PLPs) in interfering in this axis. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the family Arteriviridae, is responsible for reproductive disorders in pregnant sows and respiratory problems in piglets, resulting in huge losses in the swine industry worldwide. Of note, PRRSV infection causes immunosuppression, of which the mechanism is not completely understood. Here, we demonstrate for the first time that STING, a protein typically associated with the antiviral response in DNA viruses, plays a critical role in controlling PRRSV infection. However, PRRSV utilizes its encoded protein Nsp2 to inhibit STING activity by blocking its translocation from the ER to the Golgi apparatus. In particular, Nsp2 retains STING at the ER by interacting with and further deubiquitinating STIM1. For this process, the activity of the viral PLP2 DUB enzyme is indispensable. The study describes a novel mechanism by which PLP2 plays a critical role in suppressing the innate immune response against arteriviruses and potentially other viruses that encode similar proteases.


Assuntos
Proteínas de Membrana , Peptídeo Hidrolases , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Molécula 1 de Interação Estromal , Animais , Feminino , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Suínos , Proteínas não Estruturais Virais/metabolismo , Proteínas de Membrana/metabolismo , Imunidade Inata/imunologia , Ubiquitinação/fisiologia
3.
Vet Res ; 55(1): 22, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374131

RESUMO

Clinically, Landrace pigs are more susceptible to porcine circovirus-associated diseases (PCVADs) than Piétrain pigs. We previously found that porcine circovirus type 2 (PCV2) can infect T-lymphoblasts. The present study examined the replication kinetics of six PCV2 strains in the lymphoblasts of Landrace and Piétrain pigs. The results showed that T-lymphoblasts from Landrace pigs are much more susceptible to PCV2 infection than those from Piétrain pigs. In addition, PCV2 replication was strain-dependent. PCV2 binding to T-lymphoblasts was partially mediated by chondroitin sulfate (CS) and dermatan sulfate (DS). Phosphacan, an effective internalization mediator in monocytes that contains several CS chains, was also demonstrated to be involved in PCV2 internalization. Viral binding and internalization were not different between the two breeds, however, the subsequent step, the disassembly was. Although inhibition of serine proteases blocked PCV2 replication in both Landrace and Piétrain pigs, this only occurred at a neutral pH in Piétrain pigs, whereas this occurred also at a low pH in Landrace. This suggested that more proteases can cleave PCV2 in Landrace lymphoblasts than in Piétrain lymphoblasts, explaining the better replication. Through co-localization studies of viral particles with endo-lysosomal markers, and quantitative analysis of organelle sizes during viral internalization, it was observed that PCV2 may exhibit a higher propensity for viral escape from late endosomes in Landrace pigs (smaller) compared to Piétrain pigs. These results provide new understandings of the different PCV2 susceptibility in Landrace and Piétrain pigs.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Suínos , Animais , Linfócitos T , Circovirus/fisiologia , Linfócitos , Internalização do Vírus , Infecções por Circoviridae/veterinária
4.
Vet Res ; 55(1): 113, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304917

RESUMO

Transmissible gastroenteritis virus (TGEV) causes high mortality in young piglets (< 3 days of age). With aging, the susceptibility/morbidity/mortality rates drop. We previously hypothesized that the age-related changes in the intestinal mucus could be responsible for this resistance. Hence, this study investigated the effect of porcine intestinal mucus from 3-day and 3-week-old pigs on the free mobility of the virulent TGEV Miller strain, and on the infection in swine testicle (ST) cells. Single particle tracking (SPT) revealed that TGEV had significantly higher diffusion coefficients in 3-day mucus compared to 3-week mucus. TGEV and charged and uncharged control nanoparticles diffused freely in 3-day mucus but were hindered by 3-week mucus in the diffusion model; TGEV mimicked the diffusion behavior of negatively charged carboxylated particles. Inoculation of ST cells with TGEV in the presence of 3-week mucus resulted in a significantly lower average number of infected cells (30.9 ± 11.9/5 fields) compared with 3-day mucus (84.6 ± 16.4/5 fields). These results show that 3-week mucus has a significant TGEV-blocking activity compared to 3-day mucus in free diffusion and infection of the underlying susceptible cells. Additionally, a label-free proteomics analysis revealed an increased expression of mucin 13, known for negatively regulating the tight junctions in intestinal epithelium, in 3-day-old pigs. In 3-week-old pigs, a higher expression of mucin 2, a type of secreted mucin which is known for inhibiting coronavirus infection, was observed. Concludingly, this study demonstrated a protective effect of 3-week mucus against viral infections.


Assuntos
Gastroenterite Suína Transmissível , Muco , Vírus da Gastroenterite Transmissível , Animais , Vírus da Gastroenterite Transmissível/fisiologia , Suínos , Gastroenterite Suína Transmissível/virologia , Muco/virologia , Mucosa Intestinal/virologia , Fatores Etários
5.
Vet Res ; 55(1): 118, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334245

RESUMO

Honey bees are rapidly declining, which poses a significant threat to our environment and agriculture industry. These vital insects face a disease complex believed to be caused by a combination of parasites, viruses, pesticides, and nutritional deficiencies. However, the real aetiology is still enigmatic. Due to the conventional analysis methods, we still lack complete insights into the honey bee virome and the presence of pathogenic bacteria. To fill this knowledge gap, we employed third-generation nanopore metagenomic sequencing on honey bee haemolymph to monitor the presence of pathogens over almost a year. This study provides valuable insights into the changes in bacterial and viral loads within honey bee colonies. We identified different pathogens in the honey bee haemolymph, which are not included in honey bee screenings. These pathogens comprise the Apis mellifera filamentous virus, Apis rhabdoviruses, and various bacteria such as Frischella sp. and Arsenophonus sp. Furthermore, a sharp contrast was observed between young and old bees. Our research proposes that transgenerational immune priming may play a role in shaping infection patterns in honey bees. We observed a significant increase in pathogen loads in the spring, followed by a notable decrease in pathogen presence during the summer and autumn months. However, certain pathogens seem to be able to evade this priming effect, making them particularly intriguing as potential factors contributing to mortality. In the future, we aim to expand our research on honey bee transgenerational immune priming and investigate its potential in natural settings. This knowledge will ultimately enhance honey bee health and decrease colony mortality.


Assuntos
Hemolinfa , Estações do Ano , Animais , Abelhas/virologia , Abelhas/microbiologia , Hemolinfa/virologia , Hemolinfa/microbiologia , Sequenciamento por Nanoporos/métodos , Sequenciamento por Nanoporos/veterinária , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Viroma
6.
Fish Shellfish Immunol ; 153: 109873, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236862

RESUMO

Haemocytes play a crucial role in the invertebrate's immune system. In our lab, five subpopulations of shrimp haemocytes were identified in the past: hyalinocytes, granulocytes, semi-granulocytes and two subpopulations of non-phagocytic cells. In the latter two subpopulations, their characteristics such as having small cytoplasmic rims and not adhering to plastic cell-culture plates are very similar to those of mammalian lymphocytes. Therefore, they were designated lymphocyte-like haemocytes. Although little is known about their function, we hypothesize, based on their morphology, that they may have a cytotoxic activity like natural killer cells, with the ability to recognize and kill target cells. In our study, K562 cells and Sf9 cells were used as xenogenous target cells to detect the cytotoxic activity of the shrimp non-adherent lymphocyte-like haemocytes. Non-adherent haemocytes were collected and mixed with K562 cells and Sf9 cells at a 5:1 ratio and the binding activity was examined under a microscope. The binding rate of non-adherent haemocytes to K562 cells and Sf9 cells reached 6.6 % and 2.4 % after 240 min of culture, respectively. Then, the killing activity of non-adherent haemocytes was detected by an EMA staining (fluorescence microscopy), which showed 3.75 % dead K562 cells and 1.025 % dead Sf9 cells, and by Sytox® blue staining (flow cytometry), which showed 4.97 % of dead K562 cells. Next, a killing assay was developed to visualize the killing activity of shrimp non-adherent haemocytes. Non-adherent haemocytes were pre-labeled in blue (CellTracker blue) and K562/Sf9 cells in green (CFSE); dead cells were differentially stained red with ethidium bromide. The cytotoxic activity increased and reached a level of 2.59 % in K562 cells and 0.925 % in Sf9 cells at 120 min after co-culture. Furthermore, in the co-cultures of non-adherent haemocytes with K562 cells and Sf9 cells, upregulation of the gene and protein expression of the cytotoxic molecules torso-like protein and granzyme B was observed by RT-qPCR at 240 min and western blotting at 180 min. Additionally, non-adherent haemocytes were co-cultured with WSSV-inoculated shrimp ovary and lymphoid organ cells to detect the cytotoxicity to homogenous target cells. The binding activity started at 60 min in both the ovary and lymphoid organ cultures and reached at 240 min 50.62 % and 40.7 %, respectively. The killing activity was detected by EMA staining and the percentage of dead ovary and lymphoid organ cells increased respectively from 10.84 % to 6.89 % at 0 min to 13.09 % and 8.37 % at 240 min. In conclusion, we demonstrated the existence of cytotoxic activity of shrimp lymphocyte-like haemocytes against xenogenous cells from mammals and insects and against WSSV-infected homogenous shrimp cells.


Assuntos
Hemócitos , Penaeidae , Animais , Hemócitos/imunologia , Penaeidae/imunologia , Células K562 , Linfócitos/imunologia , Humanos , Vírus da Síndrome da Mancha Branca 1/fisiologia
7.
J Virol ; 96(18): e0115422, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36073922

RESUMO

Long noncoding RNAs (lncRNAs) have increasingly been recognized as being integral to cellular processes, including the antiviral immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is costly to the global swine industry. To identify PRRSV-related lncRNAs, we performed RNA deep sequencing and compared the profiles of lncRNAs in PRRSV-infected and uninfected Marc-145 cells. We identified a novel lncRNA called MAHAT (maintaining cell morphology-associated and highly conserved antiviral transcript; LTCON_00080558) that inhibits PRRSV replication. MAHAT binds and negatively regulates ZNF34 expression by recruiting and binding DDX6, an RNA helicase forming a complex with ZNF34. Inhibition of ZNF34 expression results in increased type I interferon expression and decreased PRRSV replication. This finding reveals a novel mechanism by which PRRSV evades the host antiviral innate immune response by downregulating the MAHAT-DDX6-ZNF34 pathway. MAHAT could be a host factor target for antiviral therapies against PRRSV infection. IMPORTANCE Long noncoding RNAs (lncRNAs) play important roles in viral infection by regulating the transcription and expression of host genes, and interferon signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic losses in the swine industry worldwide, but the mechanisms of its pathogenesis and immunology are not fully understood. Here, a new lncRNA, designated MAHAT, was identified as a regulator of host innate immune responses. MAHAT negatively regulates the expression of its target gene, ZNF34, by recruiting and binding DDX6, an RNA helicase, forming a complex with ZNF34. Inhibition of ZNF34 expression increases type I interferon expression and decreases PRRSV replication. This finding suggests that MAHAT has potential as a new target for developing antiviral drugs against PRRSV infection.


Assuntos
Imunidade Inata , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Longo não Codificante , Replicação Viral , Animais , Linhagem Celular , RNA Helicases DEAD-box/metabolismo , Imunidade Inata/genética , Interferon Tipo I/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Fatores Genéricos de Transcrição/metabolismo , Replicação Viral/genética
8.
Vet Res ; 54(1): 34, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055856

RESUMO

Porcine enteric viral infections cause high morbidity and mortality in young piglets (<3 weeks). Later, these rates decrease with age. This age-dependent infectivity remains largely unexplored. This study investigated the changes in intestinal morphology, number of mucus-producing cells and expression level of coronavirus receptors in three age groups of pigs. Villus height and crypt depth increased with age from 3 days to 3 months in duodenum and ileum but not in mid-jejunum, where the villus height decreased from 580 µm at 3 days to 430 µm at 3 months. Enterocyte length-to-width ratio increased from 3 days to 3 months in all intestinal regions. The number of mucus-producing cells increased with age in the intestinal villi and crypts. The Brunner's glands of the duodenum contained the highest concentration of mucus-producing cells. The expression of coronavirus receptor APN was highest in the small intestinal villi at all ages. DPP4 expression slightly decreased over time in jejunum and ileum; it was highest in the ileal villi of 3-day-old piglets (70.2% of cells). ACE2 and TMPRSS2 positive cells increased with age in jejunal and ileal crypts and were particularly dominant in the ileal crypts (> 45% of cells). Except for the expression of DPP4 in the jejunum and ileum of young pigs, the expression pattern of the selected coronavirus receptors was very different and not correlated with the age-dependent susceptibility to viral infections. In contrast, the number of mucus-producing cells increased over time and may play an essential role in protecting enteric mucosae against intestinal viruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , Receptores de Coronavírus , Animais , Suínos , Receptores de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Jejuno , Íleo , Mucosa Intestinal , Envelhecimento , Muco
9.
Vet Res ; 54(1): 121, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102697

RESUMO

African swine fever virus (ASFV) is a substantial threat to pig populations worldwide, contributing to economic disruption and food security challenges. Its spread is attributed to the oronasal transmission route, particularly in animals with acute ASF. Our study addresses the understudied role of nasal mucosa in ASFV infection, using a nasal explant model. The explants remained viable and revealed a discernible ASFV infection in nasal septum and turbinates post-inoculation. Interestingly, more infected cells were found in the turbinates despite its thinner structure. Further analyses showed (i) a higher replication of genotype II strain BEL18 than genotype I strain E70 in the epithelial cell layer, (ii) a preference of ASFV infection for the lamina propria and a tropism of ASFV for various susceptible cell types in different areas in the nasal mucosa, including epithelial cells, macrophages, and endothelial cells. Using porcine respiratory epithelial cells (PoRECs), isolated from nasal tissue, we found a difference in infection mechanism between the two genotypes, with genotype I favoring the basolateral surface and genotype II preferring the apical surface. Moreover, disruption of intercellular junctions enhanced infection for genotype I. This study demonstrated that ASFV may use the respiratory mucosa for entry using different cell types for replication with a genotype difference in their infection of respiratory epithelial cells.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Células Endoteliais , Genótipo , Traqueia , Sus scrofa
10.
Proc Natl Acad Sci U S A ; 117(45): 28374-28383, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097672

RESUMO

Viruses, such as white spot syndrome virus, and bacteria, such as Vibrio species, wreak havoc in shrimp aquaculture [C. M. Escobedo-Bonilla et al., J. Fish. Dis. 31, 1-18 (2008)]. As the main portal of entry for shrimp-related pathogens remain unclear, infectious diseases are difficult to prevent and control. Because the cuticle is a strong pathogen barrier, regions lacking cuticular lining, such as the shrimp's excretory organ, "the antennal gland," are major candidate entry portals [M. Corteel et al., Vet. Microbiol. 137, 209-216 (2009)]. The antennal gland, up until now morphologically underexplored, is studied using several imaging techniques. Using histology-based three-dimensional technology, we demonstrate that the antennal gland resembles a kidney, connected to a urinary bladder with a nephropore (exit opening) and a complex of diverticula, spread throughout the cephalothorax. Micromagnetic resonance imaging of live shrimp not only confirms the histology-based model, but also indicates that the filling of the diverticula is linked to the molting cycle and possibly involved therein. Based on function and complexity, we propose to rename the antennal gland as the "nephrocomplex." By an intrabladder inoculation, we showed high susceptibility of this nephrocomplex to both white spot syndrome virus and Vibrio infection compared to peroral inoculation. An induced drop in salinity allowed the virus to enter the nephrocomplex in a natural way and caused a general infection followed by death; fluorescent beads were used to demonstrate that particles may indeed enter through the nephropore. These findings pave the way for oriented disease control in shrimp.


Assuntos
Muda/fisiologia , Penaeidae/microbiologia , Penaeidae/virologia , Glândulas Sebáceas/microbiologia , Glândulas Sebáceas/patologia , Animais , Aquicultura , Salinidade , Glândulas Sebáceas/diagnóstico por imagem , Glândulas Sebáceas/virologia , Vibrio/patogenicidade , Vibrioses/patologia , Vibrioses/veterinária , Internalização do Vírus , Vírus da Síndrome da Mancha Branca 1/patogenicidade
11.
J Virol ; 95(18): e0021021, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34160254

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important endemic swine pathogens, causing enormous losses in the global swine industry. Commercially available vaccines only partially prevent or counteract the virus infection and correlated losses. PRRSV's replication mechanism has not been well understood. In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was screened to bind with the viral major envelope glycoprotein 5 (GP5) after PRRSV infection. The interacting sites are located within a 13-amino-acid (aa) region (aa 93 to 105) of GP5 and at Lys227 of GAPDH. Interestingly, viral GP5 restricts the translocation of GAPDH from the cytoplasm to the nucleus. Moreover, cytoplasmic GAPDH facilitates PRRSV replication by virtue of its glycolytic activity. The results suggest that PRRSV GP5 restricts GAPDH to the nucleus and exploits its glycolytic activity to stimulate virus replication. The data provide insight into the role of GAPDH in PRRSV replication and reveal a potential target for controlling viral infection. IMPORTANCE PRRSV poses a severe economic threat to the pig industry. PRRSV GP5, the major viral envelope protein, plays an important role in viral infection, pathogenicity, and immunity. However, interactions between GP5 and host proteins have not yet been well studied. Here, we show that GAPDH interacts with GP5 through binding a 13-aa sequence (aa 93 to 105) in GP5, while GP5 interacts with GAPDH at the K277 amino acid residue of GAPDH. We demonstrate that GP5 interacts with GAPDH in the cytoplasm during PPRSV infection, inhibiting GAPDH entry into the nucleus. PRRSV exploits the glycolytic activity of GAPDH to promote viral replication. These results enrich our understanding of PRRSV infection and pathogenesis and open a new avenue for antiviral prevention and PRRSV treatment strategies.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Animais , Gliceraldeído-3-Fosfato Desidrogenases/genética , Células HEK293 , Humanos , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Proteínas do Envelope Viral/genética
12.
Fish Shellfish Immunol ; 128: 676-683, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35985630

RESUMO

Invertebrates only have an innate immunity in which haemocytes play an important role. In our lab, 5 subpopulations of haemocytes were identified in the past by an iodixanol density gradient: hyalinocytes, granulocytes, semi-granulocytes and two subpopulations of non-phagocytic cells. For the two latter subpopulations, the haemocytes have small cytoplasm rims, do not adhere to the bottom of plastic cell-culture grade wells and present folds in the nucleus. These characteristics are similar to those of mammalian lymphocytes. Therefore, they were designated lymphocyte-like haemocytes. Although little is known about their function, we hypothesize, based on their morphology, that they may have a cytotoxic activity. First, a fast isolation technique was developed to separate the non-adherent haemocytes from the adherent haemocytes. After 60 min incubation on cell culture plates, the non-adherent haemocytes were collected. The purity reached 93% as demonstrated by flow cytometry and light microscopy upon a Hematoxylin and Eosin (H&E) staining. Cytotoxicity by lymphocytes is mediated by molecules such as perforin and granzymes and therefore, we searched for their genes in the shrimp genome. Genes coding for a torso-like protein, granzyme B and granzyme G were identified. Primers were designed and RT-PCR/RT-qPCR assays were developed. The results demonstrated that torso-like protein, granzyme B and granzyme G were mainly expressed in non-adherent haemocytes. The shrimp torso-like protein gene was most related to that of the crab torso-like protein; granzyme B gene was most related to that of mouse granzyme B and granzyme G gene was most related to that of zebrafish granzyme G. In a 72-hour in vivo WSSV infection challenge, the mRNA expression of shrimp torso-like protein, granzyme B and granzyme G in haemocytes was increasing over time, which indicated that torso-like protein, granzyme B and granzyme G of shrimp haemocytes are involved in the immune response during a viral infection. In the future, antibodies will be raised against these proteins for more in-depth functional analyses.


Assuntos
Linfócitos T Citotóxicos , Peixe-Zebra , Animais , Amarelo de Eosina-(YS)/metabolismo , Granzimas/genética , Hematoxilina/metabolismo , Mamíferos/metabolismo , Camundongos , Perforina/metabolismo , Plásticos , RNA Mensageiro/metabolismo , Tronco , Regulação para Cima , Peixe-Zebra/metabolismo
13.
J Allergy Clin Immunol ; 147(1): 179-188.e2, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949587

RESUMO

BACKGROUND: Chronic rhinosinusitis with nasal polyps (CRSwNP) is generally associated with severe type 2 immune reactions in the white population. However, recent findings suggest an additional role for neutrophils in severe type 2 inflammation. OBJECTIVE: This study aimed to characterize the neutrophilic inflammation in CRSwNP and its relation to eosinophilic inflammation in severe type 2 immune reactions. METHODS: The presence and activation of neutrophils and eosinophils was analyzed in CRS without NP and CRSwNP by measuring cell and activation markers via immunohistochemistry, immunofluorescence, Luminex assay, ELISA, UniCAP, fluorescence-activated cell sorting, and PCR. Differential neutrophil migration was assessed via Boyden-chamber assay and neutrophil survival was analyzed via flow cytometry. RESULTS: Both CRS without NP and CRSwNP displayed variable degrees of eosinophilic and neutrophilic inflammation, with a profound neutrophilic infiltration and activation in type 2 CRSwNP, associated with eosinophil extracellular traps cell death and Charcot-Leyden crystals, but independent of IL-17. Neutrophil extracellular traps cell death in CRSwNP was associated with bacterial colonization, however, neutrophils were less prone to undergo neutrophil extracellular traps cell death in the tissue of patients with severe type 2 CRSwNP. Neutrophils did not show increased migration nor survival in the CRSwNP environment in vitro. CONCLUSIONS: This study demonstrated a severe neutrophilic inflammation associated with severe eosinophilic type 2 inflammatory CRSwNP, the role of which needs further study.


Assuntos
Pólipos Nasais/imunologia , Neutrófilos/imunologia , Rinite/imunologia , Sinusite/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Feminino , Humanos , Inflamação/classificação , Inflamação/imunologia , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/classificação , Pólipos Nasais/patologia , Neutrófilos/patologia , Rinite/classificação , Rinite/patologia , Índice de Gravidade de Doença , Sinusite/classificação , Sinusite/patologia
14.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34356005

RESUMO

The family Arteriviridae comprises enveloped RNA viruses with a linear, positive-sense genome of approximately 12.7 to 15.7 kb. The spherical, pleomorphic virions have a median diameter of 50-74 nm and include eight to eleven viral proteins. Arteriviruses infect non-human mammals in a vector-independent manner. Infections are often persistent and can either be asymptomatic or produce overt disease. Some arteriviruses are important veterinary pathogens while others infect particular species of wild rodents or African non-human primates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Arteriviridae, which is available at ictv.global/report/arteriviridae.


Assuntos
Arteriviridae/classificação , Arteriviridae/genética , Filogenia , Animais , Arteriviridae/ultraestrutura , Arterivirus/classificação , Arterivirus/genética , Endocitose , Genoma Viral , Primatas , Infecções por Vírus de RNA , Proteínas Virais/genética , Vírion/classificação , Vírion/genética , Vírion/ultraestrutura , Ligação Viral , Replicação Viral
15.
J Clin Microbiol ; 59(12): e0111021, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34550807

RESUMO

Rapid identification of Mycoplasma bovis infections in cattle is a key factor to guide antimicrobial therapy and biosecurity measures. Recently, Nanopore sequencing became an affordable diagnostic tool for both clinically relevant viruses and bacteria, but the diagnostic accuracy for M. bovis identification is undocumented. Therefore, in this study Nanopore sequencing was compared to rapid identification of M. bovis with matrix-assisted laser desorption ionization-time of flight mass spectrometry (RIMM) and a triplex real-time PCR assay in a Bayesian latent class model (BLCM) for M. bovis in bronchoalveolar lavage fluid (BALf) samples obtained from calves. In practice, pooling of samples is often used to save money, but the influence on diagnostic accuracy has not been described for M. bovis. Therefore, a convenience sample of 17 pooled samples containing 5 individual BALf samples per farm was analyzed as well. The results for the pooled samples were compared with those for the individual samples to determine sensitivity and specificity. The BLCM showed good sensitivity (77.3% [95% credible interval, 57.8 to 92.8%]) and high specificity (97.4% [91.5 to 99.7%]) for Nanopore sequencing, compared to RIMM (sensitivity, 93.0% [76.8 to 99.5%]; specificity, 91.3% [82.5 to 97.0%]) and real-time PCR (sensitivity, 94.6% [89.7 to 97.7%]; specificity, 86.0% [76.1 to 93.6%]). Sensitivity and specificity of pooled analysis for M. bovis were 85.7% (95% confidence interval, 59.8 to 111.6%) and 90.0% (71.4 to 108.6%%), respectively, for Nanopore sequencing and 100% (100% to 100%) and 88.9% (68.4 to 109.4%) for RIMM. In conclusion, Nanopore sequencing is a rapid, reliable tool for the identification of M. bovis. To reduce costs and increase the chance of M. bovis identification, pooling of 5 samples for Nanopore sequencing and RIMM is possible.


Assuntos
Infecções por Mycoplasma , Mycoplasma bovis , Sequenciamento por Nanoporos , Animais , Teorema de Bayes , Bovinos , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/genética , Sistema Respiratório , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996426

RESUMO

ß-Defensins protect the respiratory tract against the myriad of microbial pathogens entering the airways with each breath. However, this potentially hostile environment is known to serve as a portal of entry for herpesviruses. The lack of suitable respiratory model systems has precluded understanding of how herpesvirus virions overcome the abundant mucosal ß-defensins during host invasion. We demonstrate how a central alphaherpesvirus, equine herpesvirus type 1 (EHV1), actually exploits ß-defensins to invade its host and initiate viral spread. The equine ß-defensins (eBDs) eBD1, -2, and -3 were produced and secreted along the upper respiratory tract. Despite the marked antimicrobial action of eBD2 and -3 against many bacterial and viral pathogens, EHV1 virions were resistant to eBDs through the action of the viral glycoprotein M envelope protein. Pretreatment of EHV1 virions with eBD2 and -3 increased the subsequent infection of rabbit kidney (RK13) cells, which was dependent on viral N-linked glycans. eBD2 and -3 also caused the aggregation of EHV1 virions on the cell surface of RK13 cells. Pretreatment of primary equine respiratory epithelial cells (EREC) with eBD1, -2, and -3 resulted in increased EHV1 virion binding to and infection of these cells. EHV1-infected EREC, in turn, showed an increased production of eBD2 and -3 compared to that seen in mock- and influenza virus-infected EREC. In addition, these eBDs attracted leukocytes, which are essential for EHV1 dissemination and which serve as latent infection reservoirs. These novel mechanisms provide new insights into herpesvirus respiratory tract infection and pathogenesis.IMPORTANCE How herpesviruses circumvent mucosal defenses to promote infection of new hosts through the respiratory tract remains unknown due to a lack of host-specific model systems. We used the alphaherpesvirus equine herpesvirus type 1 (EHV1) and equine respiratory tissues to decipher this key event in general alphaherpesvirus pathogenesis. In contrast to several respiratory viruses and bacteria, EHV1 resisted potent antimicrobial equine ß-defensins (eBDs) eBD2 and eBD3 by the action of glycoprotein M. Instead, eBD2 and -3 facilitated EHV1 particle aggregation and infection of rabbit kidney (RK13) cells. In addition, virion binding to and subsequent infection of respiratory epithelial cells were increased upon preincubation of these cells with eBD1, -2, and -3. Infected cells synthesized eBD2 and -3, promoting further host cell invasion by EHV1. Finally, eBD1, -2, and -3 recruited leukocytes, which are well-known EHV1 dissemination and latency vessels. The exploitation of host innate defenses by herpesviruses during the early phase of host colonization indicates that highly specialized strategies have developed during host-pathogen coevolution.


Assuntos
Alphaherpesvirinae/fisiologia , Anti-Infecciosos/farmacologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , beta-Defensinas/farmacologia , Animais , Anti-Infecciosos/efeitos adversos , Linhagem Celular , Células Epiteliais/virologia , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 1 , Doenças dos Cavalos/virologia , Cavalos , Interações Hospedeiro-Patógeno/fisiologia , Evasão da Resposta Imune , Coelhos , Infecções Respiratórias/tratamento farmacológico , Proteínas do Envelope Viral , beta-Defensinas/efeitos adversos
17.
J Allergy Clin Immunol ; 146(2): 337-343.e6, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417132

RESUMO

BACKGROUND: Chronic rhinosinusitis without nasal polyps (CRSsNP) is mainly considered a type 1 mediated disease. The role and clinical significance of type 2 immune responses in CRSsNP have not been addressed sufficiently; a recent cluster analysis for CRS described the existence of a subgroup of patients with CRSsNP with a type 2 inflammation. OBJECTIVE: We aimed to characterize the underlying type 2 immune response and its clinical significance in patients with CRSsNP. METHODS: A total of 240 patients with CRSsNP were endotyped and subdivided on the basis of expression of marker cytokines. Clinical data such as recurrence, comorbid asthma and allergy, and numbers of blood eosinophils and neutrophils were collected from all patients. A selection of 15 patients was further characterized for the presence of eosinophils, neutrophils, Charcot-Leyden crystals, and eosinophil extracellular traps in the mucosae. RESULTS: A type 2 immune response with increased levels of IL-4, IL-5, eosinophil cationic protein, IgE, and Staphylococcus aureus enterotoxin-specific IgE was observed in 49% of patients with CRSsNP. Those patients showed increased numbers of blood and tissue eosinophils, and they displayed a considerable eosinophilic inflammation associated with eosinophil extracellular trap cell death and Charcot-Leyden crystals. A significantly increased prevalence of recurrence and asthma was observed in patients with type 2 CRSsNP compared with in patients with non-type 2 CRSsNP. However, only 4 of 117 patients with type 2 CRSsNP developed nasal polyps within 12 years. CONCLUSION: This study shows that type 2 immune responses in CRSsNP follow similar patterns but are less pronounced than in chronic rhinosinusitis with nasal polyps. Also CRSsNP with a moderate type 2 immune response showed a considerable eosinophilic inflammation with clinical impact.


Assuntos
Inflamação/imunologia , Pólipos Nasais/imunologia , Rinite/imunologia , Sinusite/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/complicações , Rinite/complicações , Sinusite/complicações , Adulto Jovem
18.
Trop Anim Health Prod ; 53(4): 438, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402985

RESUMO

Several African swine fever (ASF) outbreaks in domestic pigs have been reported in Burundi and Malawi and whole-genome sequences of circulating outbreak viruses in these countries are limited. In the present study, complete genome sequences of ASF viruses (ASFV) that caused the 2018 outbreak in Burundi (BUR/18/Rutana) and the 2019 outbreak in Malawi (MAL/19/Karonga) were produced using Illumina next-generation sequencing (NGS) platform and compared with other previously described ASFV complete genomes. The complete nucleotide sequences of BUR/18/Rutana and MAL/19/Karonga were 176,564 and 183,325 base pairs long with GC content of 38.62 and 38.48%, respectively. The MAL/19/Karonga virus had a total of 186 open reading frames (ORFs) while the BUR/18/Rutana strain had 151 ORFs. After comparative genomic analysis, the MAL/19/Karonga virus showed greater than 99% nucleotide identity with other complete nucleotides sequences of p72 genotype II viruses previously described in Tanzania, Europe and Asia including the Georgia 2007/1 isolate. The Burundian ASFV BUR/18/Rutana exhibited 98.95 to 99.34% nucleotide identity with genotype X ASFV previously described in Kenya and in Democratic Republic of the Congo (DRC). The serotyping results classified the BUR/18/Rutana and MAL/19/Karonga ASFV strains in serogroups 7 and 8, respectively. The results of this study provide insight into the genetic structure and antigenic diversity of ASFV strains circulating in Burundi and Malawi. This is important in order to understand the transmission dynamics and genetic evolution of ASFV in eastern Africa, with an ultimate goal of designing an efficient risk management strategy against ASF transboundary spread.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Animais , Burundi/epidemiologia , Surtos de Doenças/veterinária , Malaui/epidemiologia , Filogenia , Sus scrofa , Suínos , Tanzânia
19.
BMC Bioinformatics ; 21(1): 517, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176691

RESUMO

BACKGROUND: Implementation of Third-Generation Sequencing approaches for Whole Genome Sequencing (WGS) all-in-one diagnostics in human and veterinary medicine, requires the rapid and accurate generation of consensus genomes. Over the last years, Oxford Nanopore Technologies (ONT) released various new devices (e.g. the Flongle R9.4.1 flow cell) and bioinformatics tools (e.g. the in 2019-released Bonito basecaller), allowing cheap and user-friendly cost-efficient introduction in various NGS workflows. While single read, overall consensus accuracies, and completeness of genome sequences has been improved dramatically, further improvements are required when working with non-frequently sequenced organisms like Mycoplasma bovis. As an important primary respiratory pathogen in cattle, rapid M. bovis diagnostics is crucial to allow timely and targeted disease control and prevention. Current complete diagnostics (including identification, strain typing, and antimicrobial resistance (AMR) detection) require combined culture-based and molecular approaches, of which the first can take 1-2 weeks. At present, cheap and quick long read all-in-one WGS approaches can only be implemented if increased accuracies and genome completeness can be obtained. RESULTS: Here, a taxon-specific custom-trained Bonito v.0.1.3 basecalling model (custom-pg45) was implemented in various WGS assembly bioinformatics pipelines. Using MinION sequencing data, we showed improved consensus accuracies up to Q45.2 and Q46.7 for reference-based and Canu de novo assembled M. bovis genomes, respectively. Furthermore, the custom-pg45 model resulted in mean consensus accuracies of Q45.0 and genome completeness of 94.6% for nine M. bovis field strains. Improvements were also observed for the single-use Flongle sequencer (mean Q36.0 accuracies and 80.3% genome completeness). CONCLUSIONS: These results implicate that taxon-specific basecalling of MinION and single-use Flongle Nanopore long reads are of great value to be implemented in rapid all-in-one WGS tools as evidenced for Mycoplasma bovis as an example.


Assuntos
Genoma Bacteriano , Mycoplasma bovis/genética , Sequenciamento por Nanoporos/métodos , Algoritmos , Sequenciamento Completo do Genoma/métodos
20.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30867303

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens affecting many swine-producing regions. Current vaccination strategies and antiviral drugs provide only limited protection. PRRSV infection can cleave mitochondrial antiviral signaling protein (MAVS) and inhibit the induction of type I interferon. The antiviral effector molecules that are involved in host protective responses to PRRSV infection are not fully understood. Here, by using transcriptome sequencing, we found that a zinc finger antiviral protein, ZAP, is upregulated in MAVS-transfected Marc-145 cells and that ZAP suppresses PRRSV infection at the early stage of replication. We also found that the viral protein Nsp9, an RNA-dependent RNA polymerase (RdRp), interacts with ZAP. The interacting locations were mapped to the zinc finger domain of ZAP and N-terminal amino acids 150 to 160 of Nsp9. These findings suggest that ZAP is an effective antiviral factor for suppressing PRRSV infection, and they shed light on virus-host interaction.IMPORTANCE PRRSV continues to adversely impact the global swine industry. It is important to understand the various antiviral factors against PRRSV infection. Here, a zinc finger protein, termed ZAP, was screened from MAVS-induced antiviral genes by transcriptome sequencing, and it was found to remarkably suppress PRRSV replication and interact with PRRSV Nsp9. The zinc finger domain of ZAP and amino acids 150 to 160 of Nsp9 are responsible for the interaction. These findings expand the antiviral spectrum of ZAP and provide a better understanding of ZAP antiviral mechanisms, as well as virus-host interactions.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/fisiologia , Animais , Antivirais , Linhagem Celular , Haplorrinos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Ligação Proteica , Proteínas de Ligação a RNA/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Suínos , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA