Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 340: 117895, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121008

RESUMO

In efforts to minimize environmental pollution and carbon-based gas emissions, photocatalytic hydrogen production and sensing applications at ambient temperature are important. This research reports on the development of new 0D/1D materials based on TiO2 nanoparticles grown onto CdS hetersturctured nanorods via two-stage facile synthesis. The titanate nanoparticles when loaded onto CdS surfaces at an optimized concentration (20 mM), exhibited superior photocatalytic hydrogen production (21.4 mmol/h/gcat). The optimized nanohybrid was recycled for 6 cycles up to 4 h, indicating its excellent stabity for a prolonged period. Also, the photoelectrochemical water oxidation in alkaline medium was investigated to offer the optimized CRT-2 composite with 1.91 mA/cm2@0.8 V vs. RHE (0 V vs. Ag/AgCl) that was used for effective room-temperature NO2 gas detection exhibiting a higher response (69.16%) to NO2 (100 ppm) at room temperature at the lowest detection limit of ∼118 ppb than the pristine counterparts. Further, NO2 gas sensing performance of CRT-2 sensor was increased using UV light (365 nm) activation energy. Under the UV light, the sensor exhibited a remarkable gas sensing response quick response/recovery times (68/74), excellent long-term cycling stability, and significant selectivity to NO2 gas. Due to high porosity and surface area values of CdS (5.3), TiO2 (35.5), and CRT-2 (71.5 m2/g), excellent photocatalytic H2 production and gas sensing of CRT-2 is ascribed to morphology, synergistic effect, improved charge generation, and separation. Overall, 1D/0D CdS@TiO2 is proved to be an efficient material for hydrogen production and gas detection.


Assuntos
Ciclismo , Dióxido de Nitrogênio , Carbono , Hidrogênio
2.
Environ Res ; 199: 111323, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33989620

RESUMO

Design and development of the efficient and durable photocatalyst that generates H2 fuel utilizing industrial wastewater under solar light irradiation is a sustainable process. Innumerable photocatalysts have been reported for efficient H2 production, but their large-scale production with the same efficiency of H2 production is a challenging task. In this study, a few gram-scale syntheses of ZnS wrapped with NiO hierarchical core-shell nanostructure via the surfactant-mediated process has been reported. Morphology and crystal structure analysis of ZnS/NiO showed spherical shaped hierarchical core-shell with cubic and face-centered cubic crystal structures. The surface examination confirmed the presence of Zn2+, S2-, Ni2+ and O2- ions in the nanocomposite. The photocurrent and photoluminescence studies of pristine and nanocomposites revealed that core-shell material is non-corrosive with a prolonged life-time of photo-excitons. Parametric studies on photocatalytic H2 generation in lab-scale photoreactor using crude glycerol in water recorded a high rate of H2 generation of 9.3 mmol h-1.g-1 of catalyst under the simulated solar light irradiation. Optimized reaction parameters are extended to a demonstrative photoreactor containing aqueous crude glycerol produced 18.5 mmol h-1 of H2 generation under the natural solar light irradiation. The same nanostructures were further tested with the simulated sulfide wastewater and the optimized catalyst showed H2 production of 350 mL h-1. The experimental results of time-on stream and catalytic stability demonstrated that ZnS/NiO hierarchical core-shell nanostructures can be recyclable and reusable for the continuous photocatalytic H2 generation.


Assuntos
Glicerol , Águas Residuárias , Sulfetos , Compostos de Zinco
3.
J Environ Manage ; 284: 111983, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529884

RESUMO

Lignocellulosic biomass has become an important sustainable resource for fuels, chemicals and energy. It is an attractive source for alternative fuels and green chemicals because it is non-edible and widely available in the planet in huge volumes. The use of biomass as starting material to produce fuels and chemicals leads to closed carbon cycle and promotes circular economy. Although there are many thermo-chemical methods such as pyrolysis, liquefaction and gasification close at hand for processing lignocellulosic biomass and transforming the derived compounds into valuable chemicals and fuels, the photocatalytic method is more advantageous as it utilizes light and ambient conditions for reforming the said compounds. Appraisal of recent literature indicates a variety of photocatalytic systems involving different catalysts, reactors and conditions studied for this purpose. This article reviews the recent developments on the photocatalytic oxidation of biomass and its derivatives into value-added chemicals. The nature of the biomass and derived molecules, nature of the photocatalysts, efficiency of the photocatalysts in terms of conversion and selectivity, influence of reaction conditions and light sources, effect of additives and mechanistic pathways are discussed. Importance has been given also to discuss the complementary technologies that could be coupled with photocatalysis for better conversion of biomass and biomass-derived molecules to value-added chemicals. A summary of these aspects, conclusions and future prospects are given in the end.


Assuntos
Lignina , Biomassa , Catálise , Lignina/metabolismo , Oxirredução
4.
Environ Pollut ; 269: 116170, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321309

RESUMO

Herein, we report the optimization of nitrogen (N) doping in TiO2 nanotubes to achieve the enhanced photocatalytic efficiencies in degradation of dye and H2 gas evolution under solar light exposure. TiO2 nanotubes have been produced via hydrothermal process and N doping has been tuned by varying the concentration of urea, being the source for N, by solid-state dispersion process. The structural analysis using XRD showed the characteristic occupancy of N into the structure of TiO2 and the XPS studies showed the existence of Ti-N-Ti network in the N-doped TiO2 nanotubes. The obtained TEM images showed the formation of 1D tube-like structure of TiO2. Diffuse reflectance UV-Vis absorption spectra demonstrated that the N-doped TiO2 nanotubes can efficiently absorb the photons of UV-Vis light of the solar light. The optimized N-doped TiO2 nanotubes (TiO2 nanotubes vs urea @ 1:1 ratio) showed the highest degradation efficiency over methyl orange dye (∼91% in 90 min) and showed the highest rate of H2 evolution (∼19,848 µmol h-1.g-1) under solar light irradiation. Further, the recyclability studies indicated the excellent stability of the photocatalyst for the durable use in both the photocatalytic processes. The observed efficiency was ascribed to the optimized doping of N-atoms into the lattices of TiO2, which enhanced the optical properties by forming new energy levels of N atoms near the valence band maximum of TiO2, thereby increased the overall charge separation and recombination resistance in the system. The improved reusability of photocatalyst is attributed to the doping-induced structural stability in N-doped TiO2. From the observed results, it has been recognized that the established strategy could be promising for synthesizing N-doped TiO2 nanotubes with favorable structural, optical and photocatalytic properties towards dye degradation and hydrogen production applications.


Assuntos
Luz , Nanotubos , Catálise , Titânio
5.
J Hazard Mater ; 413: 125359, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609871

RESUMO

This investigation is first to elucidate the synthesis of mono-dispersed ZnS/NiO-core/shell nanostructures with a uniform thin layer of NiO-shell on the ZnS-nanospheres as a core under controlled thermal treatments. NiO-shell thickness varied to 8.2, 12.4, 18.2, and 24.2 nm, while the ZnS-core diameter remained stable about 96 ± 6 nm. The crystalline phase and core/shell structure of the materials were confirmed using XRD and HRTEM techniques, respectively. Optical properties through UV-vis spectroscopy analysis revealed the manifestation of red-shift in the absorption spectrum of core/shell materials, while the XPS analysis of elements elucidated their stable oxidation states in ZnS/NiO core/shell structure. The optimized ZnS/NiO-core/shell showed 1.42 times higher H2 generation (162.1 mmol h-1 g-1cat) than the pristine ZnS-core (113.2 mmol h-1 g-1cat), and 64.5 times higher than the pristine NiO-shell (2.5 mmol h-1 g-1cat). The quantum efficiency at wavelengths of 420, 365 nm, and 1.5 G air mass filters was found to be 13.5%, 25.0%, and 45.3%, respectively. Water splitting experiments was also performed without addition of any additives, which showed enhanced H2 gas evolution of 1.6 mmol h-1 g-1cat under the sunlight illumination. Photoelectrochemical measurements revealed the stable photocurrent density and minimized charge recombination in the system. The performed recyclability and reusability tests for five recycles demonstrated the excellent stability of the developed photocatalysts.

6.
J Hazard Mater ; 415: 125588, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33756202

RESUMO

Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chalcogenides are classified into narrow band gap (CdS, Cu2S, Bi2S3, MoS2, CdSe and MoSe2) materials and wide band gap materials (ZnS, ZnSe and ZnTe). Composites of these materials are fabricated with different architectures in which core-shell is one of the unique composites that drastically improve the photo-excitons separation, where chalcogenides in the core can be well protected for sustainable uses. Thus,the core-shell structures promote the design and fabrication of composites with the required characteristics. Interestingly, the metal chalcogenides as a core-shell photocatalyst can be classified into type-I, reverse type-I, type-II and S-type nanocomposites, which can effectively influence and significantly enhance the rate of hydrogen production. In this direction, this review is undertaken to provide a comprehensive overview of the advanced preparation processes, properties of metal chalcogenides, and in particular, photocatalytic performance of the metal chalcogenides as a core-shell photocatalysts for solar hydrogen production.

7.
J Colloid Interface Sci ; 538: 83-98, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30500470

RESUMO

Direct conversion of solar energy into clean fuels is emerging as an efficient way for the future energy generation and solving environmental issues. Especially, photocatalytic splitting of water into H2 under solar light irradiation is one of the best techniques for clean energy production. Also, decomposition of organic pollutants using solar light is an urgent need to protect the environment. Hence, in the present study, we studied Pt-TiO2 nanotubes based composites for H2 generation and methyl orange dye degradation under solar light irradiation and compared the effect of deposition methods namely photo-deposition and chemical reduction methods. We have achieved the highest rate of H2 generation activity compared to other Pt-TiO2 based composite photocatalysts reported previously, and it is ≈173 mmol·h-1·g-1cat for both photo-deposited and chemically reduced Pt/TiO2 nanotubes. This is about 46.8 folds higher than the pristine TiO2 nanotubes at the same experimental conditions. The selected catalysts were tested for degradation of methyl orange dye, where the catalyst prepared by chemical reduction method showed improved activity (94% degradation in 30 min) compared to the one which is prepared by photo-deposition method (50.5% degradation in 30 min). XPS analysis revealed that the photo-deposited catalyst consist only metallic Pt°, while the chemical-reduction yielded Pt with multiple oxidation states, Pt°, Pt2+ and Pt4+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA