Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543467

RESUMO

In this paper, for the first time, photopolymers were synthesized from glycerol acrylates with different numbers of functional groups, 2-hydroxy-3-phenoxypropyl acrylate, glycerol dimethacrylate or glycerol trimethacrylate, without and with the addition of vanillin styrene. The photocuring kinetics were monitored by real-time photorheometry. The mechanical, rheological, thermal, antimicrobial and shape-memory properties of the photopolymers were investigated. All polymers synthesized demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus, as well as antifungal activity against Aspergillus flavus and Aspergillus niger. 2-Hydroxy-3-phenoxypropyl acrylate-based polymers showed thermoresponsive shape-memory behavior. They were able to maintain their temporary shape below the glass transition temperature and return to their permanent shape above the glass transition temperature. Synthesized photopolymers have potential to be used as sustainable polymers in a wide range of applications such as biomedicine, photonics, electronics, robotics, etc.

2.
Materials (Basel) ; 16(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984035

RESUMO

A series of thermoresponsive shape-memory photopolymers have been synthesized from the mixtures of two biobased monomers, tetrahydrofurfuryl acrylate and tridecyl methacrylate, with the addition of a small amount of 1,3-benzendithiol (molar ratio of monomers 0-10:0.5:0.03, respectively). Ethyl (2,4,6 trimethylbenzoyl) phenylphosphinate was used as photoinitiator. The calculated biorenewable carbon content of these photopolymers was in the range of (63.7-74.9)%. The increase in tetrahydrofurfuryl acrylate content in the photocurable resins resulted in a higher rate of photocuring, increased rigidity, as well as mechanical and thermal characteristics of the obtained polymers. All photopolymer samples showed thermoresponsive shape-memory behavior when reaching their glass transition temperature. The developed biobased photopolymers can replace petroleum-derived thermoresponsive shape-memory polymer analogues in a wide range of applications.

3.
Polymers (Basel) ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746036

RESUMO

Novel thermo-responsive shape-memory vanillin-based photopolymers have been developed for microtransfer molding. Different mixtures of vanillin dimethacrylate with tridecyl methacrylate and 1,3-benzenedithiol have been tested as photocurable resins. The combination of the different reaction mechanisms, thiol-acrylate photopolymerization, and acrylate homopolymerization, that were tuned by changing the ratio of monomers, resulted in a wide range of the thermal and mechanical properties of the photopolymers obtained. All polymers demonstrated great shape-memory properties and were able to return to their primary shape after the temperature programming and maintain their temporary shape. The selected compositions weretested by the microtransfer molding technique and showed promising results. The developed thermo-responsive shape-memory bio-based photopolymers have great potential for forming microtransfered structures and devices applicable on non-flat surfaces.

4.
Polymers (Basel) ; 14(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559737

RESUMO

A novel dual cure photopolymerizable system was developed by combining two plant-derived acrylic monomers, acrylated epoxidized soybean oil and vanillin dimethacrylate, as well as the thiol monomer pentaerythritol tetrakis (3-mercaptopropionate). Carefully selected resin composition allowed the researchers to overcome earlier stability/premature polymerization problems and to obtain stable (up to six months at 4 °C) and selectively-polymerizable resin. The resin demonstrated rapid photocuring without an induction period and reached a rigidity of 317.66 MPa, which was more than 20 times higher than that of the other vanillin-based polymers. Improved mechanical properties and thermal stability of the resulting cross-linked photopolymer were obtained compared to similar homo- and copolymers: Young's modulus reached 4753 MPa, the compression modulus reached 1634 MPa, and the temperature of 10% weight loss was 373 °C. The developed photocurable system was successfully applied in stereolithography and characterized with femtosecond pulsed two-beam initiation threshold measurement for the first time. The polymerization threshold of the investigated polymer was determined to be controlled by the sample temperature, making the footprint of the workstations cheaper, faster, and more reliable.

5.
Materials (Basel) ; 14(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572575

RESUMO

The investigation of the influence of vanillin acrylate-based resin composition on photocuring kinetics and antimicrobial properties of the resulting polymers was performed in order to find efficient photocurable systems for optical 3D printing of bio-based polymers with tunable rigidity, as well as with antibacterial and antifungal activity. Two vanillin derivatives, vanillin diacrylate and vanillin dimethacrylate, were tested in photocurable systems using phenyl bis(2,4,6-trimethylbenzoyl)phosphine oxide as a photoinitiator. The influence of vanillin acrylate monomer, amount of photoinitiator, presence and amount of dithiol, and presence of solvent on photocuring kinetics was investigated by real-time photoreometry. Polymers of different rigidity were obtained by changing the photocurable resin composition. The photocuring kinetics of the selected vanillin acrylate-based resins was comparable with that of commercial petroleum-based acrylate resins for optical 3D printing. Polymers based on both vanillin acrylates showed a significant antibacterial activity against Escherichia coli and Staphylococcus aureus. Vanillin diacrylate-based polymer films also demonstrated an antifungal activity in direct contact with Aspergillus niger and Aspergillus terreus. Vanillin diacrylate-based dual curing systems were selected as the most promising for optical 3D printing of bio-based polymers with antibacterial and antifungal activity.

6.
Polymers (Basel) ; 13(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809044

RESUMO

The use of renewable sources for optical 3D printing instead of petroleum-based materials is increasingly growing. Combinations of photo- and thermal polymerization in dual curing processes can enhance the thermal and mechanical properties of the synthesized thermosets. Consequently, thiol-ene/thiol-epoxy polymers were obtained by combining UV and thermal curing of acrylated epoxidized soybean oil and epoxidized linseed oil with thiols, benzene-1,3-dithiol and pentaerythritol tetra(3-mercaptopropionate). Thiol-epoxy reaction was studied by calorimetry. The changes of rheological properties were examined during UV, thermal and dual curing to select the most suitable formulations for laser direct writing (LDW). The obtained polymers were characterized by dynamic-mechanical thermal analysis, thermogravimetry, and mechanical testing. The selected dual curable mixture was tested in LDW 3D lithography for validating its potential in optical micro- and nano-additive manufacturing. The obtained results demonstrated the suitability of epoxidized linseed oil as a biobased alternative to bisphenol A diglycidyl ether in thiol-epoxy thermal curing reactions. Dual cured thermosets showed higher rigidity, tensile strength, and Young's modulus values compared with UV-cured thiol-ene polymers and the highest thermal stability from all prepared polymers. LDW results proved their suitability for high resolution 3D printing-individual features reaching an unprecedented 100 nm for plant-based materials. Finally, the biobased resin was tested for thermal post-treatment and 50% feature downscaling was achieved.

7.
Polymers (Basel) ; 12(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050639

RESUMO

The investigation of biobased systems as photocurable resins for optical 3D printing has attracted great attention in recent years; therefore, novel vanillin acrylate-based resins were designed and investigated. Cross-linked polymers were prepared by radical photopolymerization of vanillin derivatives (vanillin dimethacrylate and vanillin diacrylate) using ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate as photoinitiator. The changes of rheological properties were examined during the curing with ultraviolet/visible irradiation to detect the influences of solvent, photoinitiator, and vanillin derivative on cross-linking rate and network formation. Vanillin diacrylate-based polymers had higher values of yield of insoluble fraction, thermal stability, and better mechanical properties in comparison to vanillin dimethacrylate-based polymers. Moreover, the vanillin diacrylate polymer film showed a significant antimicrobial effect, only a bit weaker than that of chitosan film. Thermal and mechanical properties of vanillin acrylate-based polymers were comparable with those of commercial petroleum-derived materials used in optical 3D printing. Also, vanillin diacrylate proved to be well-suited for optical printing as was demonstrated by employing direct laser writing 3D lithography and microtransfer molding techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA