Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(1): 165-172, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38150295

RESUMO

Developing facile and inexpensive methods for obtaining large-area two-dimensional semiconducting nanosheets is highly desirable for mass-scale device application. Here, we report a method for producing uniform and large-area films of a Ag-doped ZnO (AZO) nanosheet network via self-assembly at the hexane-water interface by controlling the solute/solvent ratio. The self-assembled film comprises of uniformly tiled nanosheets with size ∼1 µm and thicknesses∼60-100 nm. Using these films in a Pt/AZO/Ag structure, an atomic switch operation is realized. The switching mechanism is found to be governed by electrochemical metallization with nucleation as the rate-limiting step. Our results establish the protocol for large-scale device applications of AZO nanosheets for exploring advanced atomic switch-based neuromorphic systems.

2.
J Phys Chem B ; 128(32): 7912-7919, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39105702

RESUMO

Enhancing molecular self-assembly at the monolayer level offers significant potential for various applications. For monolayers made of π-conjugated discotic liquid crystal (DLC) molecule nanowires, achieving precise separation and alignment of these nanowires has been a long-standing challenge. This research explores an approach using the manipulation of subphase temperature and surface pressure within a Langmuir trough to control molecular nanowire separation. We observe notable temperature-dependent behavior: as the temperature increases from 5 to 30 °C, the monolayer collapse pressure rises steadily. In contrast, temperatures from 35 to 50 °C exhibit an initial small plateau with a nonzero slope that becomes more distinct with rising temperature. Our study of Langmuir-Blodgett (LB) films provides crucial insights into the monolayer's structure. At lower temperatures, the LB films show coalesced molecular nanowires, whereas at higher temperatures, the DLC nanowires separate and form an interconnected network. Remarkably, upon compression, this network transforms into a compact, highly uniform monolayer. To explain these temperature-dependent behaviors, we examine the area relaxation curves, which indicate a two-step molecular loss mechanism involving desorption and monolayer collapse due to the nucleation and growth of critical nuclei. This extensive study offers valuable insights into the dynamic interaction of the temperature, surface pressure, and molecular assembly, enhancing our understanding of the fundamental processes in monolayer self-assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA