RESUMO
Foodborne pathogens continue to challenge public health due to their ability to cause severe illness and their increasing resistance to current antimicrobial treatments. Listeria monocytogenes is a resilient foodborne pathogen that poses significant risks to vulnerable populations, leading to severe infections and high hospitalization rates. The emergence of antimicrobial-resistant (AMR) strains of L. monocytogenes underscores the need for novel therapeutic strategies. In this study, we investigated the antimicrobial efficacy of the (2E)-3-(3,5-dibromo-2-hydroxylphenyl)-1-(5-methylfuran-2-yl) prop-2-en-1-one (DK06) against multidrug-resistant L. monocytogenes. DK06 exhibited a significant dose-dependent inhibition of L. monocytogenes growth, achieving a maximum inhibition of 92.9 % at 320 µM. Molecular docking and dynamics simulations revealed high binding affinities for key virulence proteins PlcB and ArgA, with stable protein-ligand interactions. DK06 also disrupted biofilm formation at sub-MIC levels, reducing extracellular polymeric substances (EPS) and biofilm mass, as observed by scanning electron microscopy (SEM) analysis. Furthermore, DK06 downregulated the expression of virulence genes (plcB, argA, and hly) and decreased hemolytic activity. In vivo zebrafish studies confirmed the safety of DK06 up to 80 µM, demonstrating its efficacy in reducing mortality and oxidative stress associated with L. monocytogenes infection. DK06 also attenuated inflammation by downregulating key inflammatory markers (tnfa, il1b, il6, and nfkb). These findings indicate that DK06 is a promising multi-target inhibitor with potential application in treating infections and combating antimicrobial resistance.
Assuntos
Antibacterianos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Listeria monocytogenes , Listeriose , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Peixe-Zebra , Listeria monocytogenes/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Listeriose/microbiologia , Listeriose/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Virulência/efeitos dos fármacos , Simulação de Dinâmica MolecularRESUMO
Indole-3-acetic acid (IAA) is the most widely utilized plant growth regulator. Despite its extensive usage, IAA is often overlooked as an environmental pollutant. Due to its protein-binding nature, it also functions as a uremic toxin, contributing to its association with chronic kidney disease (CKD). While in vitro and epidemiological research have demonstrated this association, the precise impact of IAA on cardiovascular disease in animal models is unknown. The main objective of this study is to conduct a mechanistic analysis of the cardiotoxic effects caused by IAA using male Wistar albino rats as the experimental model. Three different concentrations of IAA (125, 250, 500 mg/kg) were administered for 28 days. The circulating IAA concentration mimicked previously observed levels in CKD patients. The administration of IAA led to a notable augmentation in heart size and heart-to-body weight ratio, indicating cardiac hypertrophy. Echocardiographic assessments supported these observations, revealing myocardial thickening. Biochemical and gene expression analyses further corroborated the cardiotoxic effects of IAA. Dyslipidemia, increased serum c-Troponin-I levels, decreased SOD and CAT levels, and elevated lipid peroxidation in cardiac tissue were identified. Moreover, increased expression of cardiac inflammatory biomarkers, including ANP, BNP, ß-MHC, Col-III, TNF-α, and NF-κB, was also found in the IAA-treated animals. Histopathological analysis confirmed the cardiotoxic nature of IAA, providing additional evidence of its adverse effects on cardiovascular health. These results offer insights into the potential negative impact of IAA on cardiovascular function, and elucidating the underlying mechanisms of its cardiotoxicity.
Assuntos
Cardiomegalia , Ácidos Indolacéticos , Ratos Wistar , Animais , Masculino , Ratos , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Estresse Oxidativo/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Biomarcadores/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , CardiotoxicidadeRESUMO
Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes healthcare-associated infection and high mortality in immunocompromised patients. It produces several virulence factors through quorum sensing (QS) mechanisms that is essential for subverting host immune system. Even front-line antibiotics are unable to control PA pathogenicity due to the emergence of antibiotic resistance. Luteolin is a naturally derived compound that has proven to be the effective drug to annihilate pathogens through quorum quenching mechanism. In this study, the protective effect of luteolin against the PA-mediated inflammation was demonstrated using zebrafish model. Luteolin protects zebrafish from PA infection and increases their survival rate. It was found that PA-mediated ROS, lipid peroxidation, and apoptosis were also significantly reduced in luteolin-treated zebrafish larvae. Open field test (OFT) reveals that luteolin rescued PA-infected zebrafish from retarded swimming behavior. Furthermore, luteolin increases SOD and CAT levels and decreases LDH and NO levels in PA-infected zebrafish compare to control group. Histological and gene expression analysis reveals that luteolin protects PA-infected zebrafish by decreasing gut inflammation and altering the expression of inflammatory (TNF-α, IL-1ß, IL-6) and antioxidant markers (iNOS, SOD, CAT). Thus, luteolin was found to have dual effect in protecting PA-infected zebrafish by decreasing virulence factors production in PA and stimulating host immune system. This is the first study demonstrating the protective effect of luteolin using animal model. Hence, luteolin could be used as a future therapeutic drug to control multi-drug resistant PA.
Assuntos
Infecções por Pseudomonas , Fatores de Virulência , Animais , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Pseudomonas aeruginosa , Luteolina/farmacologia , Peixe-Zebra , Percepção de Quorum , Inflamação , Superóxido Dismutase/metabolismo , Antibacterianos/metabolismo , Biofilmes , Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologiaRESUMO
Diverse microbial communities colonize different habitats of the human body, including gut, oral cavity, nasal cavity and tissues. These microbial communities are known as human microbiome, plays a vital role in maintaining the health. However, changes in the composition and functions of human microbiome can result in chronic low-grade inflammation, which can damage the epithelial cells and allows pathogens and their toxic metabolites to translocate into other organs such as the liver, heart, and kidneys, causing metabolic inflammation. This dysbiosis of human microbiome has been directly linked to the onset of several non-communicable diseases. Recent metabolomics studies have revealed that pathogens produce several uraemic toxins. These metabolites can serve as inter-kingdom signals, entering the circulatory system and altering host metabolism, thereby aggravating a variety of diseases. Interestingly, Enterobacteriaceae, a critical member of Proteobacteria, has been commonly associated with several non-communicable diseases, and the abundance of this family has been positively correlated with uraemic toxin production. Hence, this review provides a comprehensive overview of Enterobacterial translocation and their metabolites role in non-communicable diseases. This understanding may lead to the identification of novel biomarkers for each metabolic disease as well as the development of novel therapeutic drugs.
Assuntos
Microbioma Gastrointestinal , Microbiota , Doenças não Transmissíveis , Humanos , Enterobacteriaceae , Inflamação/microbiologiaRESUMO
Plant growth regulators (PGRs) are increasingly used to promote sustainable agriculture, but their unregulated use raises concerns about potential environmental risks. Indole-3-acetic acid (IAA), a commonly used PGR, has been the subject of research on its developmental toxicity in the in-vivo zebrafish model. IAA exposure to zebrafish embryos caused oxidative stress, lipid peroxidation, and cellular apoptosis. The study also revealed that critical antioxidant genes including sod, cat, and bcl2 were downregulated, while pro-apoptotic genes such as bax and p53 were upregulated. IAA exposure also hampered normal cardiogenesis by downregulating myl7, amhc, and vmhc genes and potentially influencing zebrafish neurobehavior. The accumulation of IAA was confirmed by HPLC analysis of IAA-exposed zebrafish tissues. These findings underscore the need for further study on the potential ecological consequences of IAA use and the need for sustainable agricultural practices.
Assuntos
Regulação para Baixo , Embrião não Mamífero , Ácidos Indolacéticos , Estresse Oxidativo , Peixe-Zebra , Animais , Estresse Oxidativo/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Coração/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Reguladores de Crescimento de Plantas/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Inflammatory bowel disease (IBD) encompasses chronic disorders that cause severe inflammation in the digestive tract. This study evaluates (E)-3-(3,4-dichlorophenyl)-N-(2,6-dioxopiperidin-3-yl) acrylamide (named SKT40), a derivative of dioxopiperidinamide, as a potential novel treatment for IBD. The pharmacological activity of SKT40 indicated positive interactions using network pharmacology and molecular docking in silico. In vivo, adult and larval zebrafish were tested to evaluate the effectiveness of SKT40 at different concentrations (7.5 µM, 10 µM, 15 µM) in preventing dextran sulfate sodium (DSS)-induced intestinal inflammation. The administration of SKT40 resulted in positive effects by reducing reactive oxygen species (ROS), lipid peroxidation, and cell apoptosis in zebrafish larvae. SKT40 demonstrated a significant reduction in intestinal damage in adult zebrafish by increasing antioxidant enzymes that combat the causes of IBD, such as superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and glutathione peroxidase (GPx). It also reduces cellular damage and inflammation, as indicated by decreased levels of lactate dehydrogenase (LDH) and malondialdehyde (MDA). Gene expression analysis identified downregulation in gene expression of inflammatory mediators such as TNF-α, IL-1ß, COX-2, and IL-6. Histopathological analysis showed tissue repair from DSS-induced damage and indicated reduced hyperplasia of goblet cells. These findings suggest that SKT40 effectively treats intestinal damage, highlighting its potential as a promising candidate for IBD therapy.
Assuntos
Modelos Animais de Doenças , Doenças Inflamatórias Intestinais , Peixe-Zebra , Animais , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Simulação de Acoplamento Molecular , Sulfato de Dextrana/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Acrilamidas/farmacologia , Apoptose/efeitos dos fármacosRESUMO
Indole-3-acetic acid (IAA), a protein-bound uremic toxin, has been linked to cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients. This study explores the influence of IAA (125 mg/kg) on cardiovascular changes in adenine sulfate-induced CKD rats. HPLC analysis revealed that IAA-exposed CKD rats had lower excretion and increased circulation of IAA compared to both CKD and IAA control groups. Moreover, echocardiography indicated that CKD rats exposed to IAA exhibited heart enlargement, thickening of the myocardium, and cardiac hypertrophy in contrast to CKD or IAA control group. Biochemical analyses supported the finding that IAA-induced CKD rats had elevated serum levels of c-Tn-I, CK-MB, and LDH; there was also evidence of oxidative stress in cardiac tissues, with a significant decrease in SOD and CAT levels, as well as an increase in MDA levels. The gene expression analysis found significant increases in ANP, BNP, ß-MHC, TNF-α, IL-1ß, and NF-κB levels in IAA-exposed CKD groups in contrast to the CKD or IAA control group. In addition, higher cardiac fibrosis markers, including Col-I and Col-III. The findings of this study indicate that IAA could trigger cardiovascular inflammation and fibrosis in CKD conditions.
Assuntos
Fibrose , Ácidos Indolacéticos , Inflamação , Insuficiência Renal Crônica , Animais , Ácidos Indolacéticos/farmacologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Masculino , Ratos , Inflamação/induzido quimicamente , Modelos Animais de Doenças , Doenças Cardiovasculares , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologiaRESUMO
The prevalent use of Azorubine (E122) and the unintentional food additive, Bisphenol A (BPA), in ready-to-drink (RTD) beverages raises significant health concerns, especially for children. The combined impact on embryonic development must be explored despite individual safety assessments. Our investigation revealed that the combined exposure of E122 and BPA at beverage concentration significantly induces mortality and morphological deformities, including reduced growth, pericardial edema, and yolk sac edema. The co-exposure triggers oxidative stress, impairing antioxidant enzyme responses and resulting in lipid and cellular damage. Notably, apoptotic cells are observed in the neural tube and notochord of the co-exposed larvae. Critical genes related to the antioxidant response elements (nrf2, ho1, and nqo1), apoptosis activation (bcl2, bax, and p53), and pro/anti-inflammatory cytokines (nfkb, tnfa, il1b, tgfb, il10, and il12) displayed substantial changes, highlighting the molecular mechanisms. Behavior studies indicated hypo-locomotion with reduced thigmotaxis and touch response in co-exposed larvae, distinguishing it from individual exposures. These findings underscore the neurodevelopmental impacts of E122 and BPA at reported beverage concentrations, emphasizing the urgent need for comprehensive safety assessments, particularly for child consumption.
Assuntos
Compostos Benzidrílicos , Fenóis , Peixe-Zebra , Animais , Apoptose/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Bebidas , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Larva/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/toxicidadeRESUMO
Ageing is a complex process that is associated with changes in the composition and functions of gut microbiota. Reduction of gut commensals is the hallmarks of ageing, which favours the expansion of pathogens even in healthy centenarians. Interestingly, gut Enterobacteriaceae have been found to be increased with age and also consistently observed in the patients with metabolic diseases. Thus, they are associated with all-cause mortality, regardless of genetic origin, lifestyle, and fatality rate. Moreover, Enterobacteriaceae are also implicated in accelerating the ageing process through telomere attrition, cellular senescence, inflammasome activation and impairing the functions of mitochondria. However, acceleration of ageing is likely to be determined by intrinsic interactions between Enterobacteriaceae and other associated gut bacteria. Several studies suggested that Enterobacteriaceae possess genes for the synthesis of uraemic toxins. In addition to intestine, Enterobacteriaceae and their toxic metabolites have also been found in other organs, such as adipose tissue and liver and that are implicated in multiorgan dysfunction and age-related diseases. Therefore, targeting Enterobacteriaceae is a nuance approach for reducing inflammaging and enhancing the longevity of older people. This review is intended to highlight the current knowledge of Enterobacteriaceae-mediated acceleration of ageing process.
Assuntos
Enterobacteriaceae , Toxinas Urêmicas , Idoso de 80 Anos ou mais , Humanos , Idoso , Envelhecimento/fisiologia , Longevidade/fisiologia , FígadoRESUMO
Inflammatory Bowel Disease (IBD) is a group of persistent intestinal illnesses resulting from bowel inflammation unrelated to infection. The prevalence of IBD is rising in industrialized countries, increasing healthcare costs. Whether naturally occurring or synthetic, chalcones possess a broad range of biological properties, including anti-inflammatory, anti-microbial, and antioxidant effects. This investigation focuses on DKO7 (E)-3-(4-(dimethylamino)phenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one, a synthesized chalcone with potential anti-inflammatory effects in a zebrafish model of intestinal inflammation induced by Dextran sodium sulfate (DSS). The in vitro study displayed dose-dependent anti-inflammatory as well as antioxidant properties of DKO7. Additionally, DKO7 protected zebrafish larvae against lipid peroxidation, reactive oxygen stress (ROS), and DSS-induced inflammation. Moreover, DKO7 reduced the expression of pro-inflammatory genes, including TNF-α, IL-1ß, IL-6, and iNOS. Further, it reduced the levels of nitric oxide (NO) and lactate dehydrogenase (LDH) in the intestinal tissues of adult zebrafish and increased the levels of antioxidant enzymes such as Catalase (CAT) and superoxide dismutase (SOD). The protective effect of DKO7 against chemically (or DSS) induced intestinal inflammation was further verified using histopathological techniques in intestinal tissues. The furan-based chalcone derivative, DKO7, displayed antioxidant and anti-inflammatory properties. Also, DKO7 successfully reverses the DSS-induced intestinal damage in zebrafish. Overall, this study indicates the ability of DKO7 to alleviate DSS-induced gut inflammation in an in-vivo zebrafish.