Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(1): 101893, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38204592

RESUMO

Fagonia indica Burm.f. is known for its anti-infective character and has been studied in the present work as a synergistic remedy against resistant bacterial strains. Initially, phytochemicals were quantified in n-Hexane (n-Hex), ethyl acetate (E.A), methanol (MeOH), and aqueous (Aq.) extracts by Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Reverse Phase High Performance Liquid Chromatography (RP-HPLC) analysis. Later, after establishing an antibacterial resistance profile for extracts and antibiotics against gram-positive and gram-negative strains, synergism was evaluated in combination with cefixime through time-kill kinetics and bacterial protein estimation studies. Topographic images depicting synergism were obtained by scanning electron microscopy for Methicilin-resistant Staphylococcus aureus (MRSA) and Resistant Escherichia coli (R.E. coli). Results showed the presence of maximum phenolic (28.4 ± 0.67 µg GAE/mg extract) and flavonoid (11 ± 0.42 µg QE/mg extract) contents in MeOH extract. RP-HPLC results also displayed maximum polyphenols in MeOH extract followed by E.A extract. Clinical strains were resistant to cefixime whereas these were moderately inhibited by all extracts (MIC 150-300 µg/ml) except Aq. extract. E.A and n-Hex extracts demonstrated maximum synergism (Fractional inhibitory concentration index (FICI) 0.31) against R.E. coli. The n-Hex extract displayed total synergism against R.P. a with a 4-fold reduction in cefixime dose. Time-kill kinetics showed maximum inhibition of gram-negative bacterial growth from 3 to 12 h when treated at FICI and 2FICI values with > 10-fold reduction of the extracts' dose. All combinations demonstrate > 70 % protein content inhibition with bacterial cell wall disruption in SEM images. Fortunately, FICI concentrations have low hemolytic potential (<5%). Conclusively, F. indica extracts can mitigate antimicrobial resistance against cefixime and can be investigated in detail by in vivo and mechanistic studies.

2.
Int J Phytoremediation ; 24(13): 1418-1430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35148204

RESUMO

Currently, the occurrence of toxic levels of metals in soils is a serious environmental issue worldwide. Phytoremediation is getting much attention to control metals soil pollution because it is economic and environmentally friendly. However, the methods used to detect metals in plants are not uniform and have depicted poor comparability of the research investigations. Therefore, the present overview is designed to discuss the possible chemical forms of metals in various environmental matrixes and the detection methods employed to identify the chemical forms of metals in plants. Moreover, the in situ and indirect methods to detect metals in plants have also been discussed herein. In addition, the pros and cons of the available techniques have also been critically analyzed and discussed. Finally, key points/challenges and future perspectives of these methods have been highlighted for the scientific community.Novelty statementIn the current review, the possible chemical forms of metals in various environmental matrixes are discussed in detail. Various extraction agents and their efficiency for extracting metals from plants have been clearly illustrated. Further, all the available methods for analyzing the chemical forms of metals in plants have been compared.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Plantas , Solo
3.
Int J Phytoremediation ; 24(3): 293-300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34154481

RESUMO

In this study, a novel extraction and safety evaluation method for heavy metals based on different functions of plants was proposed, and an edible plant (pea) was used as the research material to explore the feasibility of the novel method. Pea sprouts were cultured in cadmium (Cd) concentrations of 0, 1.0, 3.0, and 5.0 mg L-1, respectively. The Cd in pea sprouts was continuously extracted with 100 °C distilled water, 60% ethanol, 6% acetic acid, and simulated gastric juice. It was observed that highest amount of Cd (48.65-58.87%) was found in the extraction of roots with 6% acetic acid, followed by 100 °C distilled water (28.68-37.61%). While in stems, most of the Cd (70.73-85.39%) was extracted by 6% acetic acid. The recovery rate of the sequential chemical extraction technique employed in this experiment was between 93 and 106%. Compared with traditional methods, this study has its development potential in two aspects. First, it can determine which steps of sequential extractions of heavy metals in plants are the most harmful to humans. Secondly, corresponding measures can be taken to reduce heavy metals in vegetables used daily, such as soaking edible vegetables in vinegar for a short time. Novelty statement: In this study, a novel extraction and safety evaluation method for heavy metals based on different functions of plants was proposed, and an edible plant (pea) was used as the research material to explore the feasibility of the novel method. Compared with the commonly used extraction methods, the novel method is more reasonable and has greater development potential.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Humanos , Metais Pesados/análise , Pisum sativum , Medição de Risco , Plântula/química , Poluentes do Solo/análise
4.
J Basic Microbiol ; 62(1): 48-62, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34893989

RESUMO

The need to increase food production and to reduce the pollution caused by synthetic chemicals has led to a search for biocontrol agents against plant pathogens. In the present study, a total of 37 chitinolytic bacteria were isolated from the rhizospheric soil of tomatoes using a chitin agar medium. In vitro bacterial isolates, that is, TD9, TD11, TD15, and TD24 showed strong antagonistic and enzymatic activities against Rhizoctonia (8%-55%), Fusarium (31%-48%), Colletotrichum (24%-49%), and Aspergillus on a dual culture plate and enzyme assay. Furthermore, these putative antagonistic bacterial isolates were identified as Pantoea agglomerans (TD9), Bacillus subtilis (TD11), Bacillus cereus (TD15 and TD24) using 16S rRNA sequence analysis. Additionally, in culture filtrate in vivo assay, the isolates TD11 and TD15 inhibited the growth of Rhizoctonia solani about 40% and Fusarium oxysporum about 80%. However, in the pot trials, these two bacterial isolates (TD11 and TD15) considerably suppressed the disease rate in tomatoes caused by Fusarium and Rhizoctonia fungal species. Moreover, it was concluded that B. subtilis (TD11) was found to be the most promising putative biocontrol agent, inhibiting the fungal diseases of tomatoes by 50% and showing versatile antagonistic potential.


Assuntos
Fusarium , Solanum lycopersicum , Bacillus subtilis/genética , Agentes de Controle Biológico , Doenças das Plantas , RNA Ribossômico 16S/genética
5.
Molecules ; 27(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889382

RESUMO

Oxidative stress (OS) and c-Jun N-terminal kinase (JNK) are both key indicators implicated in neuro-inflammatory signalling pathways and their respective neurodegenerative diseases. Drugs targeting these factors can be considered as suitable candidates for treatment of neuronal dysfunction and memory impairment. The present study encompasses beneficial effects of a naturally occurring triterpenoid, friedelin, against scopolamine-induced oxidative stress and neurodegenerative pathologies in mice models. The treated animals were subjected to behavioural tests i.e., Y-maze and Morris water maze (MWM) for memory dysfunction. The underlying mechanism was determined via western blotting, antioxidant enzymes and lipid profile analyses. Molecular docking studies were carried out to predict the binding modes of friedelin in the binding pocket of p-JNK protein. The results reveal that scopolamine caused oxidative stress by (1) inhibiting catalase (CAT), peroxidase enzyme (POD), superoxide dismutase (SOD), and reduced glutathione enzyme (GSH); (2) the up-regulation of thiobarbituric acid reactive substances (TBARS) in mice brain; and (3) affecting the neuronal synapse (both pre- and post-synapse) followed by associated memory dysfunction. In contrast, friedelin administration not only abolished scopolamine-induced oxidative stress, glial cell activation, and neuro-inflammation but also inhibited p-JNK and NF-κB and their downstream signaling molecules. Moreover, friedelin administration improved neuronal synapse and reversed scopolamine-induced memory impairment accompanied by the inhibition of ß-secretase enzyme (BACE-1) to halt amyloidogenic pathways of amyloid-ß production. In summary, all of the results show that friedelin is a potent naturally isolated neuro-therapeutic agent to reverse scopolamine-induced neuropathology, which is characteristic of Alzheimer's disease.


Assuntos
Escopolamina , Triterpenos , Animais , Modelos Animais de Doenças , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Estresse Oxidativo , Escopolamina/efeitos adversos , Triterpenos/uso terapêutico
6.
Saudi Pharm J ; 30(6): 793-814, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35812152

RESUMO

Multitude of diseases and side effects from conventional drugs have surged the use of herbal remedies. Thus, the current study aimed to appraise various pharmacological attributes of Artemisia brevifolia Wall. ex DC. Extracts prepared by successive solvent extraction were subjected to phytochemical and multimode antioxidant assays. Various polyphenolics and artemisinin derivatives were detected and quantified using RP-HPLC analysis. Compounds present in methanol (M) and distilled water (DW) extracts were identified using high resolution mass spectrometry (HRMS). Extracts were pharmacologically evaluated for their antibacterial, antifungal, antimalarial, antileishmanial and antidiabetic potentials. Moreover, cytotoxicity against Artemiasalina, human cancer cell lines and isolated lymphocytes was assessed. Genotoxicity was evaluated using comet, micronucleus and chromosomal aberration assays. Lastly, anti-inflammatory potential was determined through a series of in vitro and in vivo assays using BALB/c mice. Maximum extract recovery (5.95% w/w) was obtained by DW extract. Highest phenolics and flavonoids content, total antioxidant capacity, total reduction potential, percentfree radical scavenging, ß-carotene scavenging and iron chelating activities were exhibited by M extract. RP-HPLC analysis revealed significant amounts of various polyphenolic compounds (vanillic acid, syringic acid, emodin and luteolin), artemisinin, dihydro artemisinin, artesunate and artemether in ethyl acetate (EA) extract. Total 40 compounds were detected through HRMS. A noteworthy antimicrobial activity (MIC 22.22 µg/ml) was exhibited by EA extract against A. fumigatus and several bacterial strains. Maximum antimalarial, antileishmanial, brine shrimp lethality and cytotoxic potential against cancer cells was manifested by EA extract. None of the extracts exhibited genotoxicity and toxicity against isolated lymphocytes. Highest α-amylase and α-glucosidase inhibition capacities were demonstrated by DW extract. Various in-vivo anti-inflammatory models revealed significant (p < 0.05) anti-inflammatory potential of M and DW extracts. In conclusion, present findings divulged theremarkable pharmacological potential of A. brevifolia and endorse its richness in artemisinin.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34383707

RESUMO

Dermatophytosis is a major health problem all over the world including Pakistan. This is the first report of detection of dermatophytes and their antifungal drug resistance in the Northern and Western parts of Pakistan. A total of 154 samples were collected from different hospitals of Khyber Pakhtunkhwa, and out of them 136 samples were found positive. Tinea corporis (35%) was the most predominant type of infection followed by Tinea capitis (22%). The fungi identified in Tinea corporis infection types were identified as Trichophyton rubrum, Trichophyton mentagrophytes, Epidermophyton floccosum. The fungi identified in Tinea capitis included Trichophyton violaceum, T. mentagrophytes, Microsporum ferrugineum. The gender wise distribution showed both males (52%) and females (48%) were infected with the fungi. More cases belonged to the rural parts of the country. Age wise distribution showed that the infection was more prevalent in the children and the prevalence decreased with the increase in age. The positive samples were checked against two antifungal agents: fluconazole and nystatin. Among 136 positive samples, none of the isolates showed resistance to nystatin while 7% of the samples showed resistance to fluconazole. The resistant isolates were then identified by amplifying the 18S rRNA gene, using universal primers (ITS1, ITS4). Among the 9 resistant isolates, 5 isolates were identified as Trichophyton spp., 3 as Microsporum spp. and 1 as Epidermophyton spp.

8.
J Basic Microbiol ; 59(7): 723-734, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31081547

RESUMO

In the present study, 12 indigenous diesel-oil-degrading bacteria were isolated from the petroleum-contaminated soils of the Changqing oil field (Xi'an, China). Measurement of the diesel-oil degradation rates of these strains by the gravimetric method revealed that they ranged from 42% to 66% within 2 weeks. The highest degradation rates were observed from strains CQ8-1 (66%), CQ8-2 (62.6%), and CQ11 (59%), which were identified as Bacillus thuringiensis, Ochrobactrum anthropi, and Bordetella bronchialis, respectively, based on their 16S rDNA sequences. Moreover, the physiological and biochemical properties of these three strains were analyzed by Gram staining, catalase, oxidase, and Voges-Proskauer tests. Transmission electron microscopy showed that all three strains were rod shaped with flagella. Gas chromatography and mass spectrometric analyses indicated that medium- and long-chain n-alkanes in diesel oil (C11-C29) were degraded to different degrees by B. thuringiensis, O. anthropi, and B. bronchialis, and the degradation rates gradually decreased as the carbon numbers increased. Overall, the results of this study indicate strains CQ8-1, CQ8-2, and CQ11 might be useful for environmentally friendly and cost-effective bioremediation of oil-contaminated soils.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Campos de Petróleo e Gás/microbiologia , Petróleo/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Alcanos/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , China , DNA Bacteriano/genética , Flagelos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
J Environ Manage ; 230: 128-150, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30286344

RESUMO

Treatment of toxic and emerging pollutants (T&EPs) is increasing the threats to the survival of conventional wastewater treatment (WWTs) technologies. The high installation and operational costs of advanced treatment technologies have shifted the research interest to the development of economical and reliable technology for management of T&EPs. Thus, recently biogenic nanoparticles (BNPs) fabricated using microbes/microorganisms are getting tremendous research interest due to their unique properties (i.e. high specific surface area, desired morphology, catalytic reactivity) for the biodegradation and biosorption of T&EPs. In addition, BNPs can be manufactured using metal contaminated water which indicates a hidden potential for resource recovery and utilization. Therefore, the present study discusses the adsorptive and catalytic performance of BNPs in the removal of T&EPs from water (W) and wastewater (WW). In addition, inspired by the superior performance of BNPs in advance WWT, a model of BNPs based WWT resource recovery and utilization process is also proposed. Finally, main issues i.e. mass production, leaching, poisoning/toxicity, regeneration, reusability and fabrication costs and process optimization are discussed which are main hinders in the transfer of BNPs based WWT technologies from laboratory to commercial scale.


Assuntos
Nanopartículas , Águas Residuárias , Água/metabolismo , Adsorção , Biodegradação Ambiental
10.
J Environ Manage ; 234: 273-289, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30634120

RESUMO

Current research is based on an innovative approach of the fabrication of encapsulated sustainable, green, phytogenic magnetic nanoparticles (PMNPs), to inhibit the generation of secondary pollutants (Iron/Feo) during water treatment applications. These novel bio-magnetic membrane capsules (BMMCs) were prepared using two-step titration gel crosslink method, with polyvinyl alcohol and sodium alginate matrix as the model encapsulating materials to eliminate potentially toxic metals (Pb2+ and Cd2+) from water. The development of BMMCs was characterized by FTIR, XRD, XPS, SEM, VSM, TGA and EDX techniques. The effects of various operating parameters, adsorbent dose, contact time, solution pH, temperature, initial concentration of metals cations and co-existing ions were studied. The hysteresis loops have illustrated an excellent super-paramagnetic nature, demonstrating the smooth encapsulation of PMNPs without losing their magnetic properties. The maximum monolayer adsorptive capacities estimated at pH 6.5 by the Langmuir isotherm model were 548 and 610.67 mg/g for Pb2+ and Cd2+, respectively. The novel BMMCs did not only control oxidation of PMNPs but also sustained the adsorptive removal over a wide range of pH (3-8), and the electrostatic interaction and ion-exchange were the core adsorption mechanisms. The BMMCs could easily be regenerated using 25% HNO3 as an eluent for successful usage in seven repeated cycles. Therefore, the BMMCs as a material can be used as an excellent sorbent or composite material to remove toxic metals Pb2+ and Cd2+, showing strong potential for improving water and wastewater treatment technologies.


Assuntos
Nanopartículas de Magnetita , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cádmio , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Água
11.
Microb Pathog ; 110: 214-224, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28648623

RESUMO

Owing to the importance of endophytes, current research was aimed to purify the secondary metabolites from targeted source. Ferula sumbul, a lipophilic extract of the endophyte was prepared in 10% methanol and partitioned with ethyl acetate and bioassay guided isolation was carried using standard protocols against bacterial, fungal and cancer cells. The active fractions consisted of three new metabolites (2-methyl-3-nonyl prodiginine, Bis (2-ethylhexyl) phthalate, and a meroterpenoid, Preaustinoid A). Their structures were confirmed with LCMS/MS. The purified metabolites showed valuable results against tested activities which concluded that these compounds have great potential and these may be applicable to textile (dyeing), pharmaceutical (drug, infectious agents) and food (preservatives) industries. This study reveals the potential of E. nigrum as an important source of bioactive compounds including 2-methyl-3-nonyl prodiginine, Bis (2-ethylhexyl) phthalate, and Preaustinoid A. This is first report of isolation of prodiginines as well as meroterpenoid and Bis (2-ethylhexyl) phthalate from Epicoccum nigrum.


Assuntos
Anti-Infecciosos/química , Antineoplásicos/química , Ascomicetos/metabolismo , Endófitos/metabolismo , Ferula/microbiologia , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Ascomicetos/química , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Endófitos/química , Endófitos/classificação , Fungos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Melanoma , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Filogenia , Raízes de Plantas/microbiologia , Prodigiosina/análogos & derivados , Prodigiosina/química , Prodigiosina/farmacologia , Terpenos/química , Terpenos/farmacologia
12.
J Basic Microbiol ; 57(8): 643-652, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28464298

RESUMO

Magnetotactic bacteria (MTB) have started to be employed for the biosynthesis of magnetic nanoparticles, due to the rapidly increasing demand for nanoparticles in biomedical, biotechnology and environmental protection. MBT are the group of prokaryotes that have the ability to produce bio-magnetic minerals or bio-magnetic crystals of either magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in numerous shapes and size ranges, known as magnetosomes (MS). MS compel MTB to respond to the applied external magnetic field. However, it is extremely difficult to grow MTB and produce high yield of MS under artificial environmental conditions, thus creating a major hurdle to relocate MTB technology from laboratory scale to industrial or commercial level. Therefore, to best of our knowledge this review is the first attempt to highlight existing research developments about the laboratory scale and mass production of MS by MTB. Moreover, the optimum culture media and environmental conditions used for the cultivation of MTB were also considered. Finally, future research is encouraged for the improvement of MS yield which will result in the development of advanced nanotechnology/magnetotechnology.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Magnetossomos/metabolismo , Bactérias/metabolismo , Técnicas Bacteriológicas , Meios de Cultura , Óxido Ferroso-Férrico/metabolismo , Ferro/metabolismo , Magnetismo , Nanopartículas/química , Nanotecnologia , Filogenia , Sulfetos/metabolismo
13.
Water Environ Res ; 88(3): 280-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26931539

RESUMO

Simple, budget friendly, laboratory-scale integrated constructed wetland (ICW) was designed to assess domestic wastewater treatment performance at a loading rate of 75 mm/d, planted with native plant species: Veronica-angallis aquatica and compared with non-vegetative control system at various residence times of 4, 8, 12, 16, 20, 24, and 28 days. Results revealed that the vegetated ICW demonstrated superior performance over non-vegetated control: 69.12 vs 17.12%, 67.77 vs 16.04%, 68 vs 16.48%, 71.19 vs 6.56%, 71.54 vs 14.80%, and 72.04 vs 11.41% for total dissolved solids, total suspended solids, phosphates (PO4(-)), sulfate (SO4(-)), nitrate (NO3(-)), and nitrite (NO2(-)), respectively, at 20 days residence times. Reduction in bacterial counts (2.79 × 10(4) CFU/mL) and fecal pathogens (345.5 MPN index/100 mL) was observed in V. aquatica at 20 days residence time. Therefore, the present study highlights not only the presence of vegetation but also appropriate residence time in constructed wetlands for better performances.


Assuntos
Veronica , Microbiologia da Água , Purificação da Água , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Odorantes
14.
Environ Technol ; 36(13-16): 1657-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25609155

RESUMO

This research work evaluated the biofilm succession on stone media and compared the biochemical changes of sludge in attached and suspended biological reactors operated under aerobic and anaerobic conditions. Stones incubated (30±2°C) with activated sludge showed a constant increase in biofilm weight up to the fifth and seventh week time under anaerobic and aerobic conditions, respectively, where after reduction (>80%) the most probable number index of pathogen indicators on ninth week was recorded. Reduction in parameters such as biological oxygen demand (BOD) (47.7%), chemical oxygen demand (COD, 41%), nitrites (60.2%), nitrates (105.5%) and phosphates (58.9%) and increase in dissolved oxygen (176.5%) of sludge were higher in aerobic attached growth reactors as compared with other settings. While, considerable reductions in these values were also observed (BOD, 53.8%; COD, 2.8%; nitrites, 28.6%; nitrates, 31.7%; phosphates, 41.4%) in the suspended growth system under anaerobic conditions. However, higher sulphate removal was observed in suspended (40.9% and 54.9%) as compared with biofilm reactors (28.2% and 29.3%). Six weeks biofilm on the stone media showed maximum physiological activities; thus, the operational conditions should be controlled to keep the biofilm structure similar to six-week-old biofilm, and can be used in fixed biofilm reactors for wastewater treatment.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Minerais/química , Esgotos/química , Esgotos/microbiologia , Aerobiose/fisiologia , Anaerobiose/fisiologia , Técnicas de Cultura Celular por Lotes/métodos
15.
Environ Technol ; 36(1-4): 424-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25182275

RESUMO

Attached growth processes for wastewater treatment have significantly been improved during recent years. Their application can be extended to sustainable municipal wastewater treatment in remote locations and in developing countries for the purpose of organic matter (biochemical oxygen demand, BOD) removal and pathogenic decontamination. The aim of this study is to assess selected packing media for biological trickling filters (BTFs) and to develop a simplified model for describing the capacity of BOD removal in BTFs. In this work, BTFs with four different media viz., rubber, polystyrene, plastic and stone have been investigated at two temperature ranges of 5-15°C and 25-35°C. The average removal of both chemical oxygen demand and BOD was higher than 80 and 90% at temperature ranges of 5-15 and 25-35°C, respectively. The geometric mean of faecal coliforms in BTF using polystyrene, plastic, rubber and stone as filter media was reduced by 4.3, 4.0, 5.8 and 5.4 log10, respectively, at a low temperature range of 5-15°C. At a higher temperature range of 25-35°C, the faecal coliform count was reduced by 3.97, 5.34, 5.36 and 4.37 log10 from polystyrene, plastic, rubber and stone media BTF, respectively. Simplified model was developed and used to estimate the optimal BOD loading rates (Bvd) for designing robust BTF systems, with appropriate filter media. It has been concluded that highly efficient BTFs can be designed using various filter media, which may be capable of treating organic loading rates of more than 3 kg BOD/m3 day. These types of BTFs can be applied for the BOD and microbial contaminants removal of wastewater for potential reuse in developing countries.


Assuntos
Ultrafiltração/instrumentação , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/instrumentação , Fenômenos Fisiológicos Bacterianos , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Biológicos , Ultrafiltração/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos
16.
J Basic Microbiol ; 54(7): 739-49, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24115187

RESUMO

Biofilms contain a diverse range of microorganisms and their varying extracellular polysaccharides. The present study has revealed biofilm succession associated with degradative effects on plastic (polypropylene) and contaminants in sludge. The wet weight of biofilm significantly (p < 0.05) increased; from 0.23 ± 0.01 to 0.44 ± 0.01 g. Similarly, the dry weight of the biofilm increased from 0.02 to 0.05 g. Significant reduction in pathogens (E. coli and feacal coliforms) by MPN technique (>80%) and in chemical parameters (decrease in COD, BOD5 of 73.32 and 69.94%) representing diminution of organic pollutants. Energy dispersive X-ray spectroscopy (EDS) of plastic revealed carbon and oxygen contents, further surface analysis of plastic by scanning electron microscopy (SEM) revealed emergence of profound bacterial growth on the surface. Fourier transform infrared (FTIR) spectroscopy conforms its biotransformation under aerobic conditions after 8 weeks. New peaks developed at the region 1050 and 969 cm(-1) indicating CO and CC bond formation. Thus plastic with 6 weeks old aerobic biofilm (free of pathogens, max. weight, and OD, efficient COD & BOD removal ability) is suggested to be maintained in fixed biofilm reactors for wastewater treatment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Consórcios Microbianos/fisiologia , Polipropilenos/química , Esgotos/microbiologia , Purificação da Água , Aderência Bacteriana , Citrobacter/crescimento & desenvolvimento , Citrobacter/metabolismo , Citrobacter/ultraestrutura , Enterobacter/crescimento & desenvolvimento , Enterobacter/metabolismo , Enterobacter/ultraestrutura , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Klebsiella/crescimento & desenvolvimento , Klebsiella/metabolismo , Klebsiella/ultraestrutura , Salmonella/crescimento & desenvolvimento , Salmonella/metabolismo , Salmonella/ultraestrutura , Shigella/crescimento & desenvolvimento , Shigella/metabolismo , Shigella/ultraestrutura
17.
Front Pharmacol ; 15: 1352827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910883

RESUMO

Artemisinin, artemether, artesunate, and dihydroartemisinin are renowned for their antimalarial potential. The current study aims to repurpose the above-mentioned artemisinic compounds (ACs) by conducting an intercomparison to evaluate their antiinflammatory potential (AIP). In order to develop potential candidates for the evaluation of AIP of ACs (50 and 100 mg/kg BW), carbon tetrachloride (1ml/kg body weight (BW)) was administered intraperitoneally to BALB/c mice. Alterations in animal behavior were assessed weekly through tail suspension test, force swim test, open field test, Y-maze test, inverted screen analysis, and weight lifting test. Aberrations in hematological, serological, endogenous antioxidants, and oxidative stress marker profiles were assessed in all twelve groups. Histological alterations were read using hematoxylin and eosin staining. Levels of inflammatory markers including nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α), and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), were determined using immunohistochemical analysis (IHCA). Antioxidant markers i.e., nuclear factor erythroid-2-related factor (Nrf-2) and thioredoxin (TRX) were also quantified through IHCA. Comet assay was performed to quantify DNA damage. Oral administration of ACs to mice significantly alleviated the carbon tetrachloride induced inflammation in comparison with silymarin. Reduced levels of several inflammatory markers including nitric oxide, thiobarbituric acid reactive substances, interleukin-1 beta, NF-κB, TNF-α, and NLRP3, underscore the substantial AIP of ACs. IHCA depicted the revitalized percent relative expression of Nrf-2 and TRX in groups treated with ACs. Behavioral analysis revealed that ACs-treated groups significantly (p<0.05) attenuated the memory deficit, anxiety, and depressive-like behavior. Moreover, histopathological, hematological, serological, and endogenous antioxidant profiles indicated substantial AIP of ACs. Findings of comet assay further bolstered the compelling evidence as DNA damage was significantly (p<0.05) curbed down after ACs (100 mg/kg) treatment. All these outcomes implied that ACs exhibited AIP in a dose-dependent manner with maximal AIP imparted by artemisinin (100 mg/kg). This pre-clinical investigation avers the tremendous AIP of ACs targeting key molecular pathways. The current study divulges artemisinin as the most potent antiinflammatory agent among the tested compounds.

18.
ACS Omega ; 9(14): 16832-16841, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617622

RESUMO

In the current research study, zinc oxide nanoparticles (ZnO-NPs) were synthesized via a green synthesis technique using the seed extract of Citrullus lanatus. The study further intended to evaluate the potential synergistic effects of ZnO-NPs with antibiotics against multidrug resistant (MDR) bacteria. It was observed that C. lanatus seed extracts obtained by n-hexane and methanolic solvents revealed the presence of constituents, such as tannins, flavonoids, and terpenoids. Furthermore, the extract of n-hexane displayed the strongest antibacterial activity against Yersinia species (17 ± 1.2 mm) and Escherichia coli (17 ± 2.6 mm), while the methanolic extract showed the maximum antibacterial activity against E. coli (17 ± 0.8 mm). Additionally, the ZnO-NP synthesis was confirmed by ultraviolet-visible analysis with a characteristic absorption peak at 280 nm. The Fourier transform infrared spectroscopy analysis suggested the absorption peaks in the 500-3800 cm-1 range, which corresponds to various groups of tertiary alcohol, aldehyde, amine, ester, aromatic compounds, thiol, amine salt, and primary amine. The scanning electron microscopy spectra of ZnO-NPs demonstrated the presence of zero-dimensional spherical particles with well-dispersed character. Moreover, encapsulation with ZnO-NPs improved the antimicrobial activity of antibiotics against the panel of MDR bacteria, and the increases in the effectiveness of particular antibiotics against MDR bacteria were significant (P = 0.0005). In essence, the synthesized ZnO-NPs have the potential as drug carriers with powerful bactericidal properties that work against MDR bacterial strains. These outcomes are an indication of such significance in pharmaceutical science, giving possibilities for further research and development in this field.

19.
Environ Monit Assess ; 185(2): 1129-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22544071

RESUMO

The present study was conducted to investigate drinking water quality (groundwater) from water samples taken from Qasim Abad, a locality of approximately 5,000 population, situated between twin cities Rawalpindi and Islamabad in Pakistan. The main sources of drinking water in this area are water bores which are dug upto the depth of 250-280 ft in almost every house. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 6.75 to 8.70, electrical conductivity 540 to 855 µS/cm, total dissolved solids 325.46 to 515.23 ppm and dissolved oxygen 1.50 to 5.64 mg/L which are within the WHO guidelines for drinking water quality. The water samples were analysed for 30 elements (aluminium, iron, magnesium, manganese, silicon, zinc, molybdenum, titanium, chromium, nickel, tungsten, silver, arsenic, boron, barium, beryllium, cadmium, cobalt, copper, gallium, mercury, lanthanum, niobium, neodymium, lead, selenium, samarium, tin, vanadium and zirconium) by using inductively coupled plasma atomic emission spectroscopy. The organic contamination was detected in terms of most probable number (MPN) of faecal coliforms. Overall, elemental levels were lower than the recommended values but three water bores (B-1, B-6, B-7) had higher values of iron (1.6, 2.206, 0.65 ppm), two water bores (B-1, B-6) had higher values of aluminium (0.95, 1.92 ppm), respectively, and molybdenum was higher by 0.01 ppm only in one water bore (B-11). The total number of coliforms present in water samples was found to be within the prescribed limit of the WHO except for 5 out of 11 bore water samples (B-2, B-3, B-4, B-8, B-11), which were found in the range 5-35 MPN/100 mL, a consequence of infiltration of contaminated water (sewage) through cross connection, leakage points and back siphoning.


Assuntos
Água Potável/química , Monitoramento Ambiental/métodos , Água Subterrânea/química , Espectrofotometria Atômica , Oligoelementos/análise , Poluentes Químicos da Água/análise , Água Potável/microbiologia , Água Potável/parasitologia , Água Subterrânea/microbiologia , Água Subterrânea/parasitologia , Humanos , Paquistão , Medição de Risco
20.
Environ Monit Assess ; 185(8): 6881-92, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23361646

RESUMO

The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.


Assuntos
Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Poliestirenos/metabolismo , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Aerobiose , Anaerobiose , Bactérias/metabolismo , Escherichia coli/crescimento & desenvolvimento , Poliestirenos/análise , Pseudomonas aeruginosa/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Esgotos/química , Shigella dysenteriae/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA