Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 279: 111822, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348185

RESUMO

The huge amount of agro-wastes generated due to expanding agricultural activities can potentially cause serious environmental and human health problems. Using the biorefinery concept, all parts of agricultural plants can be converted into multiple value-added bioproducts while reducing waste generation. This approach can be viewed as an effective strategy in developing and realizing a circular bioeconomy by accomplishing the dual goals of waste mitigation and energy recovery. However, the sustainability issue of biorefineries should still be thoroughly scrutinized using comprehensive resource accounting methods such as exergy-based approaches. In light of that, this study aims to conduct a detailed exergy analysis of whole-crop safflower biorefinery consisting of six units, i.e., straw handling, biomass pretreatment, bioethanol production, wastewater treatment, oil extraction, and biodiesel production. The analysis is carried out to find the major exergy sink in the developed biorefinery and discover the bottlenecks for further performance improvements. Overall, the wastewater treatment unit exhibits to be the major exergy sink, amounting to over 70% of the total thermodynamic irreversibility of the process. The biomass pretreatment and bioethanol production units account for 12.4 and 10.3% of the total thermodynamic inefficiencies of the process, respectively. The exergy rates associated with bioethanol, biodiesel, lignin, biogas, liquid digestate, seed cake, sodium sulfate, and glycerol are determined to be 5918.5, 16516.8, 10778.9, 1741.4, 6271.5, 15755.8, 3.4, and 823.5 kW, respectively. The overall exergetic efficiency of the system stands at 72.7%, demonstrating the adequacy of the developed biorefinery from the thermodynamic perspective.


Assuntos
Carthamus tinctorius , Agricultura , Biocombustíveis , Biomassa , Humanos , Lignina
2.
Sci Total Environ ; 802: 149842, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455274

RESUMO

Global environmental awareness has encouraged further research towards biofuel production and consumption. Despite the favorable properties of biofuels, the sustainability of their conventional production pathways from agricultural feedstocks has been questioned. Therefore, the use of non-food feedstocks as a promising approach to ensure sustainable biofuel production is encouraged. However, the use of synthetic solvents/chemicals and energy carriers during biofuel production and the consequent adverse environmental effects are still challenging. On the other hand, biofuel production is also associated with generating large volumes of waste and wastewater. Accordingly, the circular bioeconomy as an innovative approach to ensure complete valorization of feedstocks and generated waste streams under the biorefinery scheme is proposed. In line with that, the current study aims to assess the environmental sustainability of bioethanol production in a safflower-based biorefinery using the life cycle assessment framework. Based on the obtained results, safflower production and its processing into 1 MJ bioethanol under the safflower-based biorefinery led to damage of 2.23E-07 disability-adjusted life years (DALY), 2.35E-02 potentially disappeared fraction (PDF)*m2*yr, 4.76E-01 kg CO2 eq., and 3.82 MJ primary on the human health, ecosystem quality, climate change, and resources, respectively. Moreover, it was revealed that despite adverse environmental effects associated with safflower production and processing, the substitution of conventional products, i.e., products that are the typical products in the market without having environmental criteria, with their bio-counterparts, i.e., products produced in the biorefinery based on environmental criteria could overshadow the unfavorable effects and substantially enhance the overall sustainability of the biorefinery system. The developed safflower-based biorefinery led to seven- and two-time reduction in damage to the ecosystem quality and resources damage categories, respectively. The reductions in damage to human health and climate change were also found to be 52% and 24%, respectively. The weighted environmental impacts of the safflower-based biorefinery decreased by 64% due to the production of bioproducts, mainly biodiesel and biogas, replacing their fossil-based counterparts, i.e., diesel and natural gas, respectively. Finally, although the main focus of the developed safflower-based biorefinery was biofuel production, waste valorization and mainly animal feed played a significant role in improving the associated environmental impacts.


Assuntos
Biocombustíveis , Carthamus tinctorius , Animais , Biomassa , Ecossistema , Humanos , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA