Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 7(3): e06373, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33851040

RESUMO

A novel heart-shaped monopole antenna used in wireless portable communication devices is proposed and discussed in this paper. The antenna has a radiant patch surface area of 28.504 mm2, the physical size of 15 × 12.5 × 1 mm3, and electrical dimensions of 0.095λ0 × 0.079λ0 × 0.006λ0, where λ0 denotes the wavelength of the free space at 1.89 GHz. Its prototype is printed on FR4 HTG-175, having a permittivity of 4.2 and a loss tangent of 0.019 at 1 GHz. The partial ground plane and two metallic vias connecting two open-ended branches of the slitted radiating patch to a parasitic conductor element results in about 98% miniaturization of the active patch area, as compared to the conventional antenna. The proposed antenna exhibits nearly an omnidirectional pattern in the elevation plane with a maximum radiation efficiency of 82.78% at 3.99 GHz, while a peak gain of 4.7 dBi is obtained at 6.5 GHz. The measured -6 dB impedance bandwidths demonstrate that the proposed quadband antenna operates in all the frequency bands of mobile telecommunication standards (2G/3G/4G/5G) and other applications, including WLAN, WiMAX, ISM, meteorological services, IEEE 802.11y, and C-band satellite communications. This antenna is easy to manufacture and can be used in most portable devices as a compact internal antenna. After simulating the modeled antenna using HFSS, a prototype was experimentally tested, and the measured results were compared with the data obtained by simulation. The parameters analyzed are return loss, bandwidth, and gain on all frequency bands. The fabricated prototype guarantees a minimum -10 dB bandwidth of 110 MHz and a maximum return loss of -12.2 dB, despite its low radiation efficiency of 21.43 % in the lower band dedicated to GSM applications. Furthermore, the proposed antenna operates as a narrowband and wideband.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31200442

RESUMO

BACKGROUND AND OBJECTIVES: With the spread of Wifi networks, safety concerns have arisen, with complaints of somatic disorders, notably in traditional libraries and media libraries. The aim of the present study was to describe the conditions and levels of exposure to radiofrequency electromagnetic fields in the real-life occupational conditions of those working in traditional libraries and media libraries. METHODS: Dynamic measurements, using an exposimeter, were taken in 20 radiofrequency bands from 88 to 5850 MHz. The activity of 28 library workers was analyzed on a space-time budget. An audit of exposure sources and static measurements enabled the work-places to be mapped. RESULTS: In seven libraries, 78,858 samples were taken over the 20 radiofrequency bands from 88 to 5850 MHz. Exposure was described for 28 working days. The median total field was 0.071 V/m (10th percentile: 0.022 V/m, 90th percentile: 0.534 V/m) and for Wifi the median field was 0.005 V/m (10th percentile: 0.005 V/m, 90th percentile: 0.028 V/m). Median individual exposure to Wifi frequency waves ranged from 0.005 to 0.040 V/m. CONCLUSIONS: Overall, the occupational exposure in this sector was close to the exposure in the general population. Peaks were due to the use of walkie-talkies by security staff. Exposure due to external sources depended on geographic location. Exposure in this occupation is well below the general occupational exposure levels, notably as regards Wifi.


Assuntos
Monitoramento Biológico/instrumentação , Campos Eletromagnéticos , Bibliotecas , Exposição Ocupacional/análise , Ondas de Rádio , Calibragem , Telefone Celular , Meios de Comunicação , Humanos , Local de Trabalho
4.
Artigo em Inglês | MEDLINE | ID: mdl-18334320

RESUMO

The present work first provides an experimental technique to study self-heating of bulk acoustic wave (BAW) resonators under high RF power in the gigahertz range. This study is specially focused on film bulk acoustic wave resonators and solidly mounted resonators processed onto silicon wafers and designed for wireless systems. Precisely, the reflection coefficient of a one-port device is measured while up to several watts are applied and power leads to electrical drifts of impedances. In the following, we describe how absorbed power can be determined from the incident one in real time. Therefore, an infrared camera held over the radio frequency micro electromechanical system (RF-MEMS) surface with an exceptional spatial resolution reaching up to 2 microm/pixels gives accurate temperature mapping of resonators after emissivity correction. From theoretical point of view, accurate three-dimensional (3-D) structures for finite-element modeling analyses are carried out to know the best materials and architectures to use for enhancing power handling. In both experimental and theoretical investigations, comparison is made between film bulk acoustic wave resonators and solidly mounted resonators. Thus, the trend in term of material, architecture, and size of device for power application such as in transmission path of a transceiver is clearly identified.


Assuntos
Desenho Assistido por Computador , Segurança de Equipamentos/métodos , Modelos Teóricos , Transdutores , Ultrassonografia/instrumentação , Simulação por Computador , Transferência de Energia , Temperatura Alta , Ondas de Rádio , Radiometria , Espalhamento de Radiação
5.
Artigo em Inglês | MEDLINE | ID: mdl-18334348

RESUMO

This paper deals with the temperature dependence of electrical and physical features of various kinds of solidly mounted resonators (SMR). The presented bulk acoustic wave (BAW) devices are designed for the 2 GHz application. The temperature coefficient of frequency (TCF) is determined from measurements well above the temperature range defined for wireless telecommunication system specifications. Therefore, evolution of electromechanical coupling factors and quality factors at resonance and antiresonance are also monitored. Results of characterizations show the trend for a subsequent theoretical temperature compensation study by using analytical modeling. To improve accuracy of modeling, an attempt to extract temperature dependence of dielectric permittivity epsilon(33) and piezoelectric coefficient e(33) is made. Finally, a well-known analytical model is modified to take into account the temperature dependence of length, density, stiffness coefficient, dielectric permittivity, and piezoelectric coefficient. Modeling highlights the need to deposit a material with positive temperature coefficient of stiffness on the top electrode. Realistic thickness of such a layer is determined. At the same time, it is necessary to adjust piezoelectric and electrode thin film thicknesses for simultaneously keeping a constant antiresonance frequency, reaching a zero temperature coefficient of frequency for antiresonance, and minimizing the decrease in the coupling factor because of the mass-loading deposition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA