Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21370, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266593

RESUMO

Plastic waste has recently become a major global environmental concern and one of the biggest challenges has been seeking for alternative management options. Several studies have revealed the potential of several coleopteran species to degrade plastics, and this is the first research paper on plastic-degradation potential by lesser mealworms from Africa. This study evaluated the whole mitogenomic profile of the lesser mealworm to further identify the insect. The ability of the mealworm to consume Polystyrene (PS) was also evaluated alongside its associated gut microbiota diversity. Our results showed a complete circular mitochondrial genome which clustered closely to the Alphitobius genus but also suggested that our insect might be a new subspecies which require further identification. During the PS feeding trials, overall survival rates of the larvae decreased when fed a sole PS diet while PS intake was observed to increase over a 30-day period. The predominant bacteria observed in larvae fed PS diets were Kluyvera, Lactococcus, Klebsiella, Enterobacter, and Enterococcus, while Stenotrophomonas dominated the control diet. These findings demonstrated that the newly identified lesser mealworm can survive on a PS diet and has a consortium of important bacteria strongly associated with PS degradation. This work provides a better understanding of bioremediation applications, paving the way for further research into the metabolic pathways of plastic-degrading microbes and bringing hope to solving plastic waste pollution while providing high-value insect protein towards a circular economy.


Assuntos
Microbioma Gastrointestinal , Larva , Poliestirenos , Animais , Larva/microbiologia , Quênia , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Biodegradação Ambiental , Tenebrio/microbiologia , Tenebrio/metabolismo , Filogenia
2.
Microorganisms ; 10(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35889070

RESUMO

The utilization of insect-based diets to improve gastrointestinal function and gut health in poultry is gaining global attention as a promising feed additive. The objective of this study was to determine the optimal inclusion level of the full-fat black soldier fly larvae (BSFL) and Desmodium intortum (DI) in broiler chicken diets and to evaluate their impact on the microbial community in the gut. The bacterial communities were characterized using Oxford nanopore sequencing of the full-length bacterial 16S rRNA gene. Four dietary treatments, T1 (25% DI + 75% BSFL), T2 (50% DI + 50% BSFL), T3 (75% DI + 25% BSFL) and T4 (100% fishmeal + 0% DI + BSFL), were fed to the broiler chickens for a period of 42 days. Out of the 395,034 classified reads analyzed, the most predominant phyla identified across all the four dietary treatments were Firmicutes (94%), Bacteroidetes (3%), and Proteobacteria (2%). The T1 diet showed the highest alpha diversity and richness according to the Chao1 and Shannon indices. Beta diversity assessment revealed a significant influence of diet on the abundance of the microbiome. There was an increase in beneficial lactic acid bacteria with increasing inclusion of BSFL in the diets. Our findings strongly support the inclusion of BSFL into poultry diet as a promising protein source to reshape the gut microbiota for improved gut health, immune response, and food safety.

3.
Sci Rep ; 12(1): 16714, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202892

RESUMO

Globally, most gut microbiota-related studies have focused on broilers due to their diverse microbial communities compared to that of layer chicken. However, in Africa few studies have been undertaken despite the increasing benefits to the poultry industry. The utilization of Insect-Based diets to improve the gastrointestinal function and gut health in poultry is increasingly gaining global attention. Here, we evaluated the potential roles of commercial black soldier fly larvae-based feeds (BSFLF) in reshaping the abundance, composition and diversity of the gut microbiota of layer chickens using high throughput Oxford nanopore Minion sequencing of the full length bacterial 16S rRNA gene. Two hundred and fifty ISA Brown layer chicks were reared in pens for a period of 20 weeks. The layer pullets were allotted 5 dietary treatments that were formulated as follows: control diet (T1): 100% FM + 0% BSFL, T2: 25% BSFL + 75% FM; T3: 50% BSFL + 50% FM; T4: 75% BSFL + 25% FM, and T5: 100% BSFL + 0% FM. Sampling was done from the eight major regions including oesophagus, crop, proventriculus, gizzard, duodenum, ileum, large intestines and ceca. Out of the 400,064 classified reads analyzed, the most dominant phyla identified across the feed treatments were Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria. The diet treatment with 100% inclusion levels of BSFL showed the highest intra-species alpha diversity and richness according to Chao1 and Shannon index. Intra-species beta diversity assessment revealed that the diet types significantly influenced the abundance of the microbiota, but differences between most abundant taxa were similar. There was increase in abundance of potentially beneficial bacteria (Lactobacillus, Bacteroides and Enterococcus) with increased inclusion levels of BSFLF in layer pullets diets. Across the different gut segments, Lactobacillus dominated all the eight regions and the ceca was the most diverse segment. Our findings unravel complex gut microbial shift in laying hen fed BSFLF and therefore underpins the potential roles of beneficial bacteria as promising prebiotics and probiotics in reshaping of the gut microbiota to maintain good gut health.


Assuntos
Dípteros , Microbioma Gastrointestinal , Microbiota , Ração Animal/análise , Animais , Bactérias/genética , Galinhas/genética , Dípteros/genética , Feminino , Microbioma Gastrointestinal/genética , Larva , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA