RESUMO
BACKGROUND: Anterior temporal lobe resection (ATLR) is a successful treatment for medically-refractory temporal lobe epilepsy (TLE). In the language-dominant hemisphere, 30%- 50% of individuals experience a naming decline which can impact upon daily life. Measures of structural networks are associated with language performance pre-operatively. It is unclear if analysis of network measures may predict post-operative decline. METHODS: White matter fibre tractography was performed on preoperative diffusion MRI of 44 left lateralised and left resection individuals with TLE to reconstruct the preoperative structural network. Resection masks, drawn on co-registered pre- and post-operative T1-weighted MRI scans, were used as exclusion regions on pre-operative tractography to estimate the post-operative network. Changes in graph theory metrics, cortical strength, betweenness centrality, and clustering coefficient were generated by comparing the estimated pre- and post-operative networks. These were thresholded based on the presence of the connection in each patient, ranging from 75% to 100% in steps of 5%. The average graph theory metric across thresholds was taken. We incorporated leave-one-out cross-validation with smoothly clipped absolute deviation (SCAD) least absolute shrinkage and selection operator (LASSO) feature selection and a support vector classifier to assess graph theory metrics on picture naming decline. Picture naming was assessed via the Graded Naming Test preoperatively and at 3 and 12 months post-operatively and the outcome was classified using the reliable change index (RCI) to identify clinically significant decline. The best feature combination and model was selected using the area under the curve (AUC). The sensitivity, specificity and F1-score were also reported. Permutation testing was performed to assess the machine learning model and selected regions difference significance. RESULTS: A combination of clinical and graph theory metrics were able to classify outcome of picture naming at 3 months with an AUC of 0.84. At 12 months, change in strength to cortical regions was best able to correctly classify outcome with an AUC of 0.86. Longitudinal analysis revealed that betweenness centrality was the best metric to identify patients who declined at 3 months, who will then continue to experience decline from 3 to 12 months. Both models were significantly higher AUC values than a random classifier. CONCLUSION: Our results suggest that inferred changes of network integrity were able to correctly classify picture naming decline after ATLR. These measures may be used to prospectively to identify patients who are at risk of picture naming decline after surgery and could potentially be utilised to assist tailoring the resection in order to prevent this decline.
Assuntos
Epilepsia do Lobo Temporal , Transtornos da Linguagem , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Mapeamento Encefálico/métodos , Lobo Temporal/cirurgia , Idioma , Imageamento por Ressonância MagnéticaRESUMO
Objective. Targeted electrical stimulation of the brain perturbs neural networks and modulates their rhythmic activity both at the site of stimulation and at remote brain regions. Understanding, or even predicting, this neuromodulatory effect is crucial for any therapeutic use of brain stimulation. The objective of this study was to investigate if brain network properties prior to stimulation sessions hold associative and predictive value in understanding the neuromodulatory effect of electrical stimulation in a clinical context.Approach. We analysed the stimulation responses in 131 stimulation sessions across 66 patients with focal epilepsy recorded through intracranial electroencephalogram (iEEG). We considered functional and structural connectivity features as predictors of the response at every iEEG contact. Taking advantage of multiple recordings over days, we also investigated how slow changes in interictal functional connectivity (FC) ahead of the stimulation, representing the long-term variability of FC, relate to stimulation responses.Main results. The long-term variability of FC exhibits strong association with the stimulation-induced increases in delta and theta band power. Furthermore, we show through cross-validation that long-term variability of FC improves prediction of responses above the performance of spatial predictors alone.Significance. This study highlights the importance of the slow dynamics of FC in the prediction of brain stimulation responses. Furthermore, these findings can enhance the patient-specific design of effective neuromodulatory protocols for therapeutic interventions.