Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS J ; 274(23): 6180-90, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17976194

RESUMO

The majority of phosphatidylethanolamine, an essential component of yeast mitochondria, is synthesized by phosphatidylserine decarboxylase 1 (Psd1p), a component of the inner mitochondrial membrane. Here, we report that deletion of OXA1 encoding an inner mitochondrial membrane protein translocase markedly affects the mitochondrial phosphatidylethanolamine level. In an oxa1Delta mutant, cellular and mitochondrial levels of phosphatidylethanolamine were lowered similar to a mutant with PSD1 deleted, and the rate of phosphatidylethanolamine synthesis by decarboxylation of phosphatidylserine in vivo and in vitro was decreased. This was due to a lower PSD1 transcription rate in the oxa1Delta mutant compared with wild-type and compromised assembly of Psd1p into the inner mitochondrial membrane. Lack of Mba1p, another component involved in the assembly of mitochondrial proteins into the inner mitochondrial membrane, did not affect the amount of phosphatidylethanolamine or the assembly of Psd1p. Deletion of the inner membrane protease Yme1p enhanced Psd1p stability suggesting that Yme1p contributed substantially to the proteolytic turnover of Psd1p in wild-type. In summary, our results demonstrate a link between the mitochondrial protein import machinery, assembly and stability of Psd1p, and phosphatidylethanolamine homeostasis in yeast mitochondria.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidiletanolaminas/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteases Dependentes de ATP , Adenosina Trifosfatases/análise , Complexo IV da Cadeia de Transporte de Elétrons/análise , Complexo IV da Cadeia de Transporte de Elétrons/genética , Microscopia de Fluorescência , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/genética , Modelos Biológicos , Mutação , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Plasmídeos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Frações Subcelulares/metabolismo
2.
FEBS J ; 274(5): 1328-39, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17298444

RESUMO

NAD(P)H:quinone acceptor oxidoreductases are flavoenzymes expressed in the cytoplasm of many tissues and afford protection against the cytotoxic effects of electrophilic quinones by catalyzing a strict two-electron reduction. Such enzymes have been reported from several mammalian sources, e.g. human, mouse and rat, and from plant species. Here, we report identification of Lot6p (YLR011wp), the first soluble quinone reductase from the unicellular model organism Saccharomyces cerevisiae. Localization studies using an antibody raised against Lot6p as well as microscopic inspection of Lot6p-GFP demonstrated accumulation of the enzyme in the cytosol of yeast cells. Despite sharing only 23% similarity to type 1 human quinone reductase, Lot6p possesses biochemical properties that are similar to its human counterpart. The enzyme catalyzes a two-electron reduction of a series of natural and artificial quinone substrates at the expense of either NADH or NADPH. The kinetic mechanism follows a ping-pong bi-bi reaction scheme, with K(M) values of 1.6-11 microm for various quinones. Dicoumarol and Cibacron Marine, two well-known inhibitors of the quinone reductase family, bind to Lot6p and inhibit its activity. In vivo experiments demonstrate that the enzymatic activity of Lot6p is consistent with the phenotype of both Deltalot6 and Lot6p overexpressing strains, suggesting that Lot6p may play a role in managing oxidative stress in yeast.


Assuntos
FMN Redutase/metabolismo , Quinonas/toxicidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Anaerobiose , Clonagem Molecular , Citosol/metabolismo , Dicumarol/farmacologia , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , FMN Redutase/genética , FMN Redutase/isolamento & purificação , Corantes Fluorescentes , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Inativação Metabólica , Indóis , Cinética , Microscopia de Fluorescência , Modelos Moleculares , NAD/metabolismo , NADP/metabolismo , Oxirredução , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Frações Subcelulares
3.
Mol Biol Cell ; 14(2): 370-83, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12589040

RESUMO

The majority of mitochondrial phosphatidylethanolamine (PtdEtn), a phospholipid essential for aerobic growth of yeast cells, is synthesized by phosphatidylserine decarboxylase 1 (Psd1p) in the inner mitochondrial membrane (IMM). To identify components that become essential when the level of mitochondrial PtdEtn is decreased, we screened for mutants that are synthetically lethal with a temperature-sensitive (ts) allele of PSD1. This screen unveiled mutations in PHB1 and PHB2 encoding the two subunits of the prohibitin complex, which is located to the IMM and required for the stability of mitochondrially encoded proteins. Deletion of PHB1 and PHB2 resulted in an increase of mitochondrial PtdEtn at 30 degrees C. On glucose media, phb1Delta psd1Delta and phb2Delta psd1Delta double mutants were rescued only for a limited number of generations by exogenous ethanolamine, indicating that a decrease of the PtdEtn level is detrimental for prohibitin mutants. Similar to phb mutants, deletion of PSD1 destabilizes polypeptides encoded by the mitochondrial genome. In a phb1Delta phb2Delta psd1(ts) strain the destabilizing effect is dramatically enhanced. In addition, the mitochondrial genome is lost in this triple mutant, and nuclear-encoded proteins of the IMM are assembled at a very low rate. At the nonpermissive temperature mitochondria of phb1Delta phb2Delta psd1(ts) were fragmented and aggregated. In conclusion, destabilizing effects triggered by low levels of mitochondrial PtdEtn seem to account for synthetic lethality of psd1Delta with phb mutants.


Assuntos
Mitocôndrias/metabolismo , Fosfatidiletanolaminas/biossíntese , Proteínas/metabolismo , Proteínas Repressoras , Saccharomyces cerevisiae/metabolismo , Alelos , Western Blotting , Carboxiliases/metabolismo , Núcleo Celular/metabolismo , Genoma Fúngico , Glucose/metabolismo , Glucose/farmacologia , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Mutação , Fosfolipídeos/metabolismo , Plasmídeos/metabolismo , Porinas/metabolismo , Proibitinas , Proteínas/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Temperatura , Fatores de Tempo
4.
Biochim Biophys Acta ; 1686(1-2): 161-8, 2004 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-15522832

RESUMO

In the yeast, three biosynthetic pathways lead to the formation of phosphatidylethanolamine (PtdEtn): (i) decarboxylation of phosphatidylserine (PtdSer) by phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria; (ii) decarboxylation of PtdSer by Psd2p in a Golgi/vacuolar compartment; and (iii) the CDP-ethanolamine (CDP-Etn) branch of the Kennedy pathway. The major phospholipid of the yeast, phosphatidylcholine (PtdCho), is formed either by methylation of PtdEtn or via the CDP-choline branch of the Kennedy pathway. To study the contribution of these pathways to the supply of PtdEtn and PtdCho to mitochondrial membranes, labeling experiments in vivo with [(3)H]serine and [(14)C]ethanolamine, or with [(3)H]serine and [(14)C]choline, respectively, and subsequent cell fractionation were performed with psd1Delta and psd2Delta mutants. As shown by comparison of the labeling patterns of the different strains, the major source of cellular and mitochondrial PtdEtn is Psd1p. PtdEtn formed by Psd2p or the CDP-Etn pathway, however, can be imported into mitochondria, although with moderate efficiency. In contrast to mitochondria, microsomal PtdEtn is mainly derived from the CDP-Etn pathway. PtdEtn formed by Psd2p is the preferred substrate for PtdCho synthesis. PtdCho derived from the different pathways appears to be supplied to subcellular membranes from a single PtdCho pool. Thus, the different pathways of PtdEtn biosynthesis play different roles in the assembly of PtdEtn into cellular membranes.


Assuntos
Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Radioisótopos de Carbono , Carboxiliases/deficiência , Carboxiliases/genética , Carboxiliases/metabolismo , Cistina Difosfato/análogos & derivados , Cistina Difosfato/metabolismo , Etanolamina/química , Etanolamina/metabolismo , Deleção de Genes , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Fosfatidiletanolaminas/biossíntese , Saccharomyces cerevisiae/genética , Serina/análogos & derivados , Serina/metabolismo , Trítio
5.
J Exp Med ; 205(6): 1269-76, 2008 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-18490491

RESUMO

The nuclear factor kappaB (NF-kappaB) pathway plays a central role in inflammation and immunity. In response to proinflammatory cytokines and pathogen-associated molecular patterns, NF-kappaB activation is controlled by IkappaB kinase (IKK)beta. Using Cre/lox-mediated gene targeting of IKKbeta, we have uncovered a tissue-specific role for IKKbeta during infection with group B streptococcus. Although deletion of IKKbeta in airway epithelial cells had the predicted effect of inhibiting inflammation and reducing innate immunity, deletion of IKKbeta in the myeloid lineage unexpectedly conferred resistance to infection that was associated with increased expression of interleukin (IL)-12, inducible nitric oxide synthase (NOS2), and major histocompatibility complex (MHC) class II by macrophages. We also describe a previously unknown role for IKKbeta in the inhibition of signal transducer and activator of transcription (Stat)1 signaling in macrophages, which is critical for IL-12, NOS2, and MHC class II expression. These studies suggest that IKKbeta inhibits the "classically" activated or M1 macrophage phenotype during infection through negative cross talk with the Stat1 pathway. This may represent a mechanism to prevent the over-exuberant activation of macrophages during infection and contribute to the resolution of inflammation. This establishes a new role for IKKbeta in the regulation of macrophage activation with important implications in chronic inflammatory disease, infection, and cancer.


Assuntos
Quinase I-kappa B/imunologia , Quinase I-kappa B/fisiologia , Inflamação/prevenção & controle , Inflamação/fisiopatologia , Ativação de Macrófagos/fisiologia , Macrófagos/fisiologia , Animais , Deleção de Genes , Antígenos HLA-D/imunologia , Humanos , Quinase I-kappa B/genética , Imunidade Inata , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pneumonia Pneumocócica/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae
6.
J Biol Chem ; 282(23): 16736-43, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17428789

RESUMO

Vps4p and Vps36p of Saccharomyces cerevisiae are involved in the transport of proteins to the vacuole via the carboxypeptidase Y pathway. We found that deletion of VPS4 and VPS36 caused impaired maturation of the vacuolar proaminopeptidase I (pAPI) via autophagy or the cytosol to vacuole targeting pathway. Supplementation with ethanolamine rescued this defect, leading to an increase of the cellular amount of phosphatidylethanolamine (PtdEtn), an enhanced level of the PtdEtn-binding autophagy protein Atg8p and a balanced rate of autophagy. We also discovered that maturation of pAPI was generally affected by PtdEtn depletion in a psd1Delta psd2Delta mutant due to reduced recruitment of Atg8p to the preautophagosomal structure. Ethanolamine supplementation provided the necessary amounts of PtdEtn for complete maturation of pAPI. Since the expression level of Atg8p was not compromised in the psd1Delta psd2Delta strain, we concluded that the amount of available PtdEtn was limiting. Thus, PtdEtn appears to be a limiting factor for the balance of the carboxypeptidase Y pathway and autophagy/the cytosol to vacuole targeting pathway in the yeast.


Assuntos
Autofagia/fisiologia , Catepsina A/metabolismo , Fosfatidiletanolaminas/fisiologia , Saccharomyces cerevisiae/fisiologia , Vacúolos/enzimologia , Aminopeptidases/metabolismo , Sequência de Bases , Western Blotting , Primers do DNA , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA