Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 292(48): 19721-19732, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038291

RESUMO

Oncogenic signaling in cancer cells alters glucose uptake and utilization to supply sufficient energy and biosynthetic intermediates for survival and sustained proliferation. Oncogenic signaling also prevents oxidative stress and cell death caused by increased production of reactive oxygen species. However, elevated glucose metabolism in cancer cells, especially in glioblastoma, results in the cells becoming sensitive to glucose deprivation (i.e. in high glucose dependence), which rapidly induces cell death. However, the precise mechanism of this type of cell death remains unknown. Here, we report that glucose deprivation alone does not trigger glioblastoma cell death. We found that, for cell death to occur in glucose-deprived glioblastoma cells, cystine and glutamine also need to be present in culture media. We observed that cystine uptake through the cystine/glutamate antiporter xCT under glucose deprivation rapidly induces NADPH depletion, reactive oxygen species accumulation, and cell death. We conclude that although cystine uptake is crucial for production of antioxidant glutathione in cancer cells its transport through xCT also induces oxidative stress and cell death in glucose-deprived glioblastoma cells. Combining inhibitors targeting cancer-specific glucose metabolism with cystine and glutamine treatment may offer a therapeutic approach for glioblastoma tumors exhibiting high xCT expression.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Neoplasias Encefálicas/patologia , Morte Celular , Cistina/metabolismo , Glioblastoma/patologia , Glucose/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , NADP/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
2.
Biochem Biophys Res Commun ; 499(4): 920-926, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29626472

RESUMO

EphA2, a member of the Eph family of receptor tyrosine kinases, has been reported to promote tumor malignancy through phosphorylation of serine 897 (S897). Here, we found that overexpression of wild-type EphA2 induced S897 phosphorylation through ERK activation without growth factors or cytokines and promoted glioblastoma cell proliferation. However, overexpression of a kinase-inactive mutant of EphA2 failed to induce ERK activation, S897 phosphorylation, and promotion of glioblastoma cell proliferation. These data suggest that when overexpressed, EphA2 induces ERK activation through its tyrosine kinase activity, leading to S897 phosphorylation and promotion of glioblastoma cell proliferation. Our findings provide a new insight into how EphA2 mediates glioblastoma progression.


Assuntos
Glioblastoma/enzimologia , Glioblastoma/patologia , Fosfosserina/metabolismo , Receptor EphA2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Modelos Biológicos , Fosforilação
3.
J Cell Sci ; 128(10): 1912-21, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25908849

RESUMO

Expression of EphA2 is upregulated in various cancers that are derived from epithelial cells and correlates with the ability of a cancer cell to undergo migration and invasion. Here we have investigated the role of EphA2 in the epithelial morphogenesis of Madin-Darby canine kidney (MDCK) cells in three-dimensional culture. We show that EphA2 is phosphorylated on serine residue 897 through hepatocyte growth factor (HGF) stimulation using a phosphatidylinositol 3-kinase (PI3K)-Akt-dependent mechanism and that this phosphorylation is required for the formation of extensions, the first step of tubulogenesis, in MDCK cysts. By contrast, stimulation using the ligand ephrinA1 dephosphorylates EphA2 on serine residue 897 and suppresses the HGF-induced morphological change. Furthermore, activation of the small GTPase RhoG is involved in the HGF-induced formation of extensions downstream of EphA2. These observations suggest that a ligand-independent activity of EphA2 contributes to epithelial morphogenesis.


Assuntos
Fator de Crescimento de Hepatócito/farmacologia , Receptor EphA2/metabolismo , Serina/metabolismo , Animais , Movimento Celular/fisiologia , Cães , Transição Epitelial-Mesenquimal , Células Madin Darby de Rim Canino , Conformação Molecular , Fosforilação
4.
J Neurosci ; 32(24): 8293-305, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22699910

RESUMO

Semaphorins have been identified as repulsive guidance molecules in the developing nervous system. We recently reported that the semaphorin 4D (Sema4D) receptor Plexin-B1 induces repulsion in axon and dendrites by functioning as a GTPase-activating protein (GAP) for R-Ras and M-Ras, respectively. In axons, Sema4D stimulation induces growth cone collapse, and downregulation of R-Ras activity by Plexin-B1-mediated GAP activity is required for the action. Axonal R-Ras GAP activity downregulates phosphatidylinositol 3-kinase signaling pathway, and thereby induces inactivation of a microtubule assembly promoter protein, CRMP-2. However, in contrast to the well studied roles of semaphorins and plexins in axonal guidance, signaling molecules linking M-Ras GAP to dendritic cytoskeleton remain obscure. Here we identified an Ena/VASP ligand, Lamellipodin (Lpd), as a novel effector of M-Ras in dendrites. Lpd was expressed in F-actin-rich distal dendritic processes and was required for both basal and M-Ras-mediated dendrite development. Subcellular fractionation showed M-Ras-dependent membrane translocation of Lpd, which was suppressed by Sema4D. Furthermore, the Ena/VASP-binding region within Lpd was required for dendrite development, and its membrane targeting was sufficient to overcome the Sema4D-mediated reduction of dendritic outgrowth and disappearance of F-actin from distal dendrites. Furthermore, in utero electroporation experiments also indicated that regulation of the M-Ras-Lpd system by the GAP activity of Plexin is involved in the normal development of cortical dendrites in vivo. Overall, our study sheds light on how repulsive guidance molecules regulate actin cytoskeleton in dendrites, revealing a novel mechanism that the M-Ras-Lpd system regulates actin-based dendrite remodeling by Sema/Plexin in rats or mice of either sex.


Assuntos
Antígenos CD/fisiologia , Proteínas de Transporte/fisiologia , Dendritos/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de Superfície Celular/fisiologia , Semaforinas/fisiologia , Proteínas ras/fisiologia , Actinas/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Citoesqueleto/metabolismo , Dendritos/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Neurônios/citologia , Neurônios/metabolismo , Cultura Primária de Células , Transporte Proteico/fisiologia , Ratos , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo
5.
J Biol Chem ; 286(37): 32672-83, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21768103

RESUMO

Pombe Cdc15 homology proteins, characterized by Fer/CIP4 homology Bin-Amphiphysin-Rvs/extended Fer/CIP4 homology (F-BAR/EFC) domains with membrane invaginating property, play critical roles in a variety of membrane reorganization processes. Among them, Rapostlin/formin-binding protein 17 (FBP17) has attracted increasing attention as a critical coordinator of endocytosis. Here we found that Rapostlin was expressed in the developing rat brain, including the hippocampus, in late developmental stages when accelerated dendritic spine formation and maturation occur. In primary cultured rat hippocampal neurons, knockdown of Rapostlin by shRNA or overexpression of Rapostlin-QQ, an F-BAR domain mutant of Rapostlin that has no ability to induce membrane invagination, led to a significant decrease in spine density. Expression of shRNA-resistant wild-type Rapostlin effectively restored spine density in Rapostlin knockdown neurons, whereas expression of Rapostlin deletion mutants lacking the protein kinase C-related kinase homology region 1 (HR1) or Src homology 3 (SH3) domain did not. In addition, knockdown of Rapostlin or overexpression of Rapostlin-QQ reduced the uptake of transferrin in hippocampal neurons. Knockdown of Rnd2, which binds to the HR1 domain of Rapostlin, also reduced spine density and the transferrin uptake. These results suggest that Rapostlin and Rnd2 cooperatively regulate spine density. Indeed, Rnd2 enhanced the Rapostlin-induced tubular membrane invagination. We conclude that the F-BAR protein Rapostlin, whose activity is regulated by Rnd2, plays a key role in spine formation through the regulation of membrane dynamics.


Assuntos
Estruturas da Membrana Celular/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Estruturas da Membrana Celular/genética , Espinhas Dendríticas/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Hipocampo/citologia , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Wistar , Transferrina/genética , Transferrina/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Domínios de Homologia de src
6.
J Cell Physiol ; 227(2): 618-29, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21448919

RESUMO

Bradykinin (BK) plays a major role in producing peripheral sensitization in response to peripheral inflammation and in pain transmission in the central nerve system (CNS). Because BK activates protein kinase C (PKC) through phospholipase C (PLC)-ß and myristoylated alanine-rich C kinase substrate (MARCKS) has been found to be a substrate of PKC, we explored the possibility that BK could induce MARCKS phosphorylation and regulate its function. BK stimulation induced transient MARCKS phosphorylation on Ser159 with a peak at 1 min in human neuroblastoma SH-SY5Y cells. By contrast, PKC activation by the phorbol ester phorbol 12,13-dibutyrate (PDBu) elicited MARCKS phosphorylation which lasted more than 10 min. Western blotting analyses and glutathione S-transferase (GST) pull-down analyses showed that the phosphorylation by BK was the result of activation of the PKC-dependent RhoA/Rho-associated coiled-coil kinase (ROCK) pathway. Protein phosphatase (PP) 2A inhibitors calyculin A and fostriecin inhibited the dephosphorylation of MARCKS after BK-induced phosphorylation. Moreover, immunoprecipitation analyses showed that PP2A interacts with MARCKS. These results indicated that PP2A is the dominant PP of MARCKS after BK stimulation. We established SH-SY5Y cell lines expressing wild-type MARCKS and unphosphorylatable MARCKS, and cell morphology changes after cell stimulation were studied. PDBu induced lamellipodia formation on the neuroblastoma cell line SH-SY5Y and the morphology was sustained, whereas BK induced neurite outgrowth of the cells via lamellipodia-like actin accumulation that depended on transient MARCKS phosphorylation. Thus these findings show a novel BK signal cascade-that is, BK promotes neurite outgrowth through transient MARCKS phosphorylation involving the PKC-dependent RhoA/ROCK pathway and PP2A in a neuroblastoma cell line.


Assuntos
Bradicinina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neuritos/fisiologia , Actinas/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Substrato Quinase C Rico em Alanina Miristoilada , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/metabolismo , Fosforilação/fisiologia , Pseudópodes/fisiologia , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Transdução de Sinais
7.
Exp Cell Res ; 317(12): 1701-13, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21621533

RESUMO

Disruption of cell-extracellular matrix interaction causes epithelial cells to undergo apoptosis called anoikis, and resistance to anoikis has been suggested to be a critical step for cancer cells to metastasize. EphA2 is frequently overexpressed in a variety of human cancers, and recent studies have found that overexpression of EphA2 contributes to malignant cellular behavior, including resistance to anoikis, in several different types of cancer cells. Here we show that Ephexin4, a guanine nucleotide exchange factor for the small GTPase RhoG that interacts with EphA2, plays an important role in the regulation of anoikis. Knockdown of Ephexin4 promoted anoikis in HeLa cells, and experiments using a knockdown-rescue approach showed that activation of RhoG, phosphatidylinositol 3-kinase (PI3K), and Akt was required for the Ephexin4-mediated suppression of anoikis. Indeed, Ephexin4 knockdown caused a decrease in RhoG activity and Akt phosphorylation in HeLa cells cultured in suspension. In addition, Ephexin4 was involved in the EphA2-mediated suppression of anoikis. Taken together, these results suggest that Ephexin4 mediates resistance to anoikis through activation of RhoG and PI3K downstream of EphA2.


Assuntos
Anoikis/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor EphA2/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células Cultivadas , Cães , Feminino , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Receptor EphA2/genética , Transdução de Sinais , Proteínas rho de Ligação ao GTP/genética
8.
J Biol Chem ; 285(36): 28200-9, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20610402

RESUMO

Plexins are receptors for axonal guidance molecules semaphorins. We recently reported that the semaphorin 4D (Sema4D) receptor, Plexin-B1, suppresses PI3K signaling through the R-Ras GTPase-activating protein (GAP) activity, inducing growth cone collapse. Phosphatidylinositol 3-phosphate level is critically regulated by PI3K and PTEN (phosphatase and tensin homologue deleted chromosome ten). Here we examined the involvement of PTEN in the Plexin-B1-induced repulsive response. Phosphorylation of PTEN at Ser-380 is known to suppress its phosphatase activity. Sema4D induced the dephosphorylation of PTEN at Ser-380 and stimulated PTEN phosphatase activity in hippocampal neurons. Knockdown of endogenous PTEN suppressed the Sema4D-induced growth cone collapse. Phosphorylation mimic PTEN mutant suppressed the Sema4D-induced growth cone collapse, whereas phosphorylation-resistant PTEN mutant by itself induced growth cone collapse. Plexin-B1-induced PTEN dephosphorylation through R-Ras GAP activity and R-Ras GAP activity was by itself sufficient for PTEN dephosphorylation and activation. We also suggested that the Sema4D-induced PTEN dephosphorylation and growth cone collapse were mediated by the inhibition of casein kinase 2 alpha activity. Thus, we propose that Sema4D/Plexin-B1 promotes the dephosphorylation and activation of PTEN through the R-Ras GAP activity, inducing growth cone collapse.


Assuntos
Antígenos CD/metabolismo , Cones de Crescimento/metabolismo , Hipocampo/citologia , Proteínas do Tecido Nervoso/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Células COS , Caseína Quinase II/metabolismo , Chlorocebus aethiops , Ativação Enzimática , Humanos , Fosforilação , Ratos , Transdução de Sinais
9.
J Cell Biol ; 173(4): 601-13, 2006 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-16702230

RESUMO

Plexins are cell surface receptors for semaphorins and regulate cell migration in many cell types. We recently reported that the semaphorin 4D (Sema4D) receptor Plexin-B1 functions as a GTPase-activating protein (GAP) for R-Ras, a member of Ras family GTPases implicated in regulation of integrin activity and cell migration. We characterized the role of R-Ras downstream of Sema4D/Plexin-B1 in cell migration. Activation of Plexin-B1 by Sema4D suppressed the ECM-dependent R-Ras activation, R-Ras-mediated phosphatydylinositol 3-kinase activation, and beta(1) integrin activation through its R-Ras GAP domain, leading to inhibition of cell migration. In addition, inactivation of R-Ras by overexpression of the R-Ras-specific GAP or knockdown of R-Ras by RNA interference was sufficient for suppressing beta(1) integrin activation and cell migration in response to the ECM stimulation. Thus, we conclude that R-Ras activity is critical for ECM-mediated beta(1) integrin activation and cell migration and that inactivation of R-Ras by Sema4D/Plexin-B1-mediated R-Ras GAP activity controls cell migration by modulating the activity of beta(1) integrins.


Assuntos
Antígenos CD/metabolismo , Movimento Celular/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Integrina beta1/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Proteínas ras/metabolismo , Animais , Antígenos CD/farmacologia , Células COS , Movimento Celular/efeitos dos fármacos , Chlorocebus aethiops , Colágeno/metabolismo , Colágeno/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ativação Enzimática/fisiologia , Matriz Extracelular/metabolismo , GTP Fosfo-Hidrolases/genética , Glicina/análogos & derivados , Integrina beta1/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , Ratos , Semaforinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas ras/genética
10.
EMBO Rep ; 10(6): 614-21, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19444311

RESUMO

Plexins are receptors for axonal guidance molecules known as semaphorins. We recently reported that the semaphorin 4D (Sema4D) receptor, Plexin-B1, induces axonal growth cone collapse by functioning as an R-Ras GTPase activating protein (GAP). Here, we report that Plexin-B1 shows GAP activity for M-Ras, another member of the Ras family of GTPases. In cortical neurons, the expression of M-Ras was upregulated during dendritic development. Knockdown of endogenous M-Ras-but not R-Ras-reduced dendritic outgrowth and branching, whereas overexpression of constitutively active M-Ras, M-Ras(Q71L), enhanced dendritic outgrowth and branching. Sema4D suppressed M-Ras activity and reduced dendritic outgrowth and branching, but this reduction was blocked by M-Ras(Q71L). M-Ras(Q71L) stimulated extracellular signal-regulated kinase (ERK) activation, inducing dendrite growth, whereas Sema4D suppressed ERK activity and down-regulation of ERK was required for a Sema4D-induced reduction of dendrite growth. Thus, we conclude that Plexin-B1 is a dual functional GAP for R-Ras and M-Ras, remodelling axon and dendrite morphology, respectively.


Assuntos
Dendritos/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos CD/metabolismo , Células COS , Chlorocebus aethiops , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Ratos , Semaforinas/metabolismo
11.
Nature ; 424(6947): 461-4, 2003 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-12879077

RESUMO

The small GTPase Rac has a central role in regulating the actin cytoskeleton during cell migration and axon guidance. Elmo has been identified as an upstream regulator of Rac1 that binds to and functionally cooperates with Dock180 (refs 2-4). Dock180 does not contain a conventional catalytic domain for guanine nucleotide exchange on Rac, but possesses a domain that directly binds to and specifically activates Rac1 (refs 5, 6). The small GTPase RhoG mediates several cellular morphological processes, such as neurite outgrowth in neuronal cells, through a signalling cascade that activates Rac1 (refs 7-12); however, the downstream target of RhoG and the mechanism by which RhoG regulates Rac1 activity remain unclear. Here we show that RhoG interacts directly with Elmo in a GTP-dependent manner and forms a ternary complex with Dock180 to induce activation of Rac1. The RhoG-Elmo-Dock180 pathway is required for activation of Rac1 and cell spreading mediated by integrin, as well as for neurite outgrowth induced by nerve growth factor. We conclude that RhoG activates Rac1 through Elmo and Dock180 to control cell morphology.


Assuntos
Proteínas de Transporte/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Tamanho Celular/efeitos dos fármacos , Imunofluorescência , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Integrinas/metabolismo , Mutação/genética , Fator de Crescimento Neural/farmacologia , Neuritos/metabolismo , Células PC12 , Ligação Proteica , Transporte Proteico , Ratos , Proteínas rac de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP
12.
Proc Natl Acad Sci U S A ; 104(48): 19040-5, 2007 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18024597

RESUMO

Semaphorins are a large class of secreted or membrane-associated proteins that act as chemotactic cues for cell movement via their transmembrane receptors, plexins. We hypothesized that the function of the semaphorin signaling pathway in the control of cell migration could be harnessed by cancer cells during invasion and metastasis. We now report 13 somatic missense mutations in the cytoplasmic domain of the Plexin-B1 gene. Mutations were found in 89% (8 of 9) of prostate cancer bone metastases, in 41% (7 of 17) of lymph node metastases, and in 46% (41 of 89) of primary cancers. Forty percent of prostate cancers contained the same mutation. Overexpression of the Plexin-B1 protein was found in the majority of primary tumors. The mutations hinder Rac and R-Ras binding and R-RasGAP activity, resulting in an increase in cell motility, invasion, adhesion, and lamellipodia extension. These results identify a key role for Plexin-B1 and the semaphorin signaling pathway it mediates in prostate cancer.


Assuntos
Adenocarcinoma/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Neoplasias da Próstata/genética , Receptores de Superfície Celular/genética , Adenocarcinoma/patologia , Adenocarcinoma/secundário , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática/genética , Masculino , Invasividade Neoplásica/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/fisiologia , Polimorfismo Conformacional de Fita Simples , Neoplasias da Próstata/patologia , Estrutura Terciária de Proteína , Pseudópodes/ultraestrutura , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/fisiologia , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
13.
J Neurosci Res ; 87(8): 1794-805, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19156867

RESUMO

Rho family small GTPases are key regulators of morphological changes in neurons. Cdc42, one of the most characterized members of the Rho family of proteins, is involved in axon and dendrite outgrowth through cytoskeletal reorganization. Recent studies have identified Zizimin1, a member of the Dock180-related family of proteins [also called CDM (Ced-5/Dock180/Myoblast city)-zizimin homology (CZH) proteins], as a specific guanine-nucleotide exchange factor (GEF) for Cdc42. However, the physiological function of Zizimin1 is totally unknown. In this study, we investigated the role of Zizimin1 in dendrite development in rat hippocampal neurons. In situ hybridization and Western blot analysis showed that Zizimin1 is strongly expressed in the developing brain including in the hippocampus and cerebral cortex in late developmental stages. Overexpression of wild-type Zizimin1 promoted dendrite growth, whereas knockdown of Zizimin1 by short hairpin RNA or expression of a mutant Zizimin1 lacking Cdc42 GEF activity suppressed dendrite growth in primary cultured rat hippocampal neurons. Both the N-terminal CZH1 domain, which is conserved among CZH proteins, and the Pleckstrin homology domain of Zizimin1 are involved in membrane localization, Cdc42 activation, and regulation of dendrite growth. Thus, these results suggest that Zizimin1 plays an important role in dendrite growth in hippocampal neurons through activation of Cdc42.


Assuntos
Diferenciação Celular/fisiologia , Crescimento Celular , Dendritos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Linhagem Celular , Membrana Celular/metabolismo , Células Cultivadas , Dendritos/ultraestrutura , Regulação para Baixo/genética , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Hipocampo/ultraestrutura , Humanos , Camundongos , Neurogênese/fisiologia , Estrutura Terciária de Proteína/fisiologia , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar
14.
Biochem Biophys Rep ; 17: 56-64, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30582008

RESUMO

The appropriate development and regulation of neuronal morphology are important to establish functional neuronal circuits and enable higher brain function of the central nervous system. R-Ras, a member of the Ras family of small GTPases, plays crucial roles in the regulation of axonal morphology, including outgrowth, branching, and guidance. GTP-bound activated R-Ras reorganizes actin filaments and microtubules through interactions with its downstream effectors, leading to the precise control of axonal morphology. However, little is known about the upstream regulatory mechanisms for R-Ras activation in neurons. In this study, we found that brain-derived neurotrophic factor (BDNF) has a positive effect on endogenous R-Ras activation and promotes R-Ras-mediated axonal growth. RNA interference knockdown and overexpression experiments revealed that RasGRF1, a guanine nucleotide exchange factor (GEF) for R-Ras, is involved in BDNF-induced R-Ras activation and the promotion of axonal growth. Phosphorylation of RasGRF1 by protein kinase A at Ser916/898 is needed for the full activation of its GEF activity and to facilitate Ras signaling. We observed that BDNF treatment markedly increased this phosphorylation. Our results suggest that BDNF is one of the critical extrinsic regulators for R-Ras activation, and that RasGRF1 is an intrinsic key mediator for BDNF-induced R-Ras activation and R-Ras-mediated axonal morphological regulation.

15.
J Neurosci Res ; 86(14): 3052-61, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18615735

RESUMO

Dendrite development is required for establishing proper neuronal connectivity. Rho-family small GTPases have been reported to play important roles in the regulation of dendritic growth and morphology. However, the molecular mechanisms that control the activities of Rho GTPases in developing dendrites are not well understood. In the present study we found Dock4, an activator of the small GTPase Rac, to have a role in regulating dendritic growth and branching in rat hippocampal neurons. Dock4 is highly expressed in the developing rat brain, predominantly in hippocampal neurons. In dissociated cultured hippocampal neurons, the expression of Dock4 protein is up-regulated after between 3 and 8 days in culture, when dendrites begin to grow. Knockdown of endogenous Dock4 results in reduced dendritic growth and branching. Conversely, overexpression of Dock4 with its binding partner ELMO2 enhances the numbers of dendrites and dendritic branches. These morphological effects elicited by Dock4 and ELMO2 require Rac activation and the C-terminal Crk-binding region of Dock4. Indeed, Dock4 forms a complex with ELMO2 and CrkII in hippocampal neurons. These findings demonstrate a new function of the Rac activator Dock4 in dendritic morphogenesis in hippocampal neurons.


Assuntos
Dendritos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Hipocampo/embriologia , Hipocampo/metabolismo , Animais , Western Blotting , Proteínas de Transporte/metabolismo , Células Cultivadas , Imunofluorescência , Hipocampo/citologia , Imunoprecipitação , Hibridização In Situ , Neurônios/citologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Ratos , Ratos Wistar
16.
Curr Biol ; 12(15): 1353-8, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12176367

RESUMO

The Galpha subunits of the G(12) family of heterotrimeric G proteins, defined by Galpha(12) and Galpha(13), are involved in many signaling pathways and diverse cellular functions. In an attempt to elucidate downstream effectors of Galpha(12) for cellular functions, we have performed a yeast two-hybrid screening of a rat brain cDNA library and revealed that Ser/Thr protein phosphatase type 5 (PP5) is a novel effector of Galpha(12) and Galpha(13). PP5 is a newly identified phosphatase and consists of a C-terminal catalytic domain and an N-terminal regulatory tetratricopeptide repeat (TPR) domain [2]. Arachidonic acid was recently shown to activate PP5 phosphatase activity by binding to its TPR domain, however the precise regulatory mechanism of PP5 phosphatase activity is not fully determined. In this study, we show that active forms of Galpha(12) and Galpha(13) specifically interact with PP5 through its TPR domain and activate its phosphatase activity about 2.5-fold. Active forms of Galpha(12) and Galpha(13) also enhance the arachidonic acid-stimulated PP5 phosphatase activity about 2.5-fold. Moreover, we demonstrate that the active form of Galpha(12) translocates PP5 to the cell periphery and colocalizes with PP5. These results propose a new signaling pathway of G(12) family G proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Encéfalo/enzimologia , Células COS , Chlorocebus aethiops , Ativação Enzimática , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Vetores Genéticos , Cinética , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
17.
Mol Cell Biol ; 22(9): 2952-64, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11940653

RESUMO

Rho family small GTPases are key regulators of the actin cytoskeleton in various cell types. The Rnd proteins, Rnd1, Rnd2, and Rnd3/RhoE, have been recently identified as new members of the Rho family of GTPases, and expression of Rnd1 or Rnd3 in fibroblasts causes the disassembly of actin stress fibers and the retraction of the cell body to produce extensively branching cellular processes. Here we have performed a yeast two-hybrid screening by using Rnd1 as bait and identified a novel protein that specifically binds to Rnd GTPases. We named this protein Socius. Socius directly binds to Rnd GTPases through its COOH-terminal region. When transfected into COS-7 cells, Socius is translocated to the cell periphery in response to Rnd1 and Rnd3 and colocalized with the GTPases. While expression of wild-type Socius in Swiss 3T3 fibroblasts has little effect on the actin cytoskeleton, the expression of a membrane-targeted form of Socius, containing a COOH-terminal farnesylation motif (Socius-CAAX), induces a dramatic loss of stress fibers. The inhibitory effect of Socius-CAAX on stress fiber formation is enhanced by truncation of its NH(2) terminus. On the other hand, the expression of Socius-CAAX or its NH(2) terminus-truncated form suppresses the Rnd-induced retraction of the cell body and the production of extensively branching cellular processes, although the disassembly of stress fibers is observed. We propose that Socius participates in the Rnd GTPase-induced signal transduction pathways, leading to reorganization of the actin cytoskeleton.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Fibras de Estresse/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias , Células COS , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Tamanho Celular , Citoesqueleto/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido , Proteínas rho de Ligação ao GTP/química
18.
Neurosci Res ; 54(2): 149-53, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16303198

RESUMO

The present study examined the in vivo role of Rnd2, a Rho family small GTPase, in brain development. Rnd2 was expressed by radially migrating cells, which primarily develop to pyramidal neurons, during their stay in the subventricular zone of embryonic cerebral cortex and hippocampus. Exogenous expression of wild-type and a constitutively active Rnd2, but not a negative mutant of Rnd2, in radially migrating cells by in utero electroporation disturbed their morphology and migration to upper layers. These results indicate that Rnd2 functions in vivo as a regulator of the migration and morphological changes associated with the development of pyramidal neurons.


Assuntos
Neocórtex/citologia , Neocórtex/embriologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Movimento Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Eletroporação , Desenvolvimento Embrionário , Feminino , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neocórtex/metabolismo , Gravidez , Ratos , Proteínas rho de Ligação ao GTP/metabolismo
19.
Brain Res ; 1073-1074: 103-8, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16443196

RESUMO

ELMO is an upstream regulator of the Rho family small GTPase Rac. We investigated the distributions of mRNAs of two subtypes of ELMO, ELMO1 and ELMO2, in the developing mouse brain. Both ELMO1 and ELMO2 mRNAs are widely distributed in the developing mouse brain, but they were expressed in different neuronal populations in the cerebral cortex, thalamus, and cerebellum. Thus, ELMO1 and ELMO2 may play different roles during brain development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encéfalo/metabolismo , Proteínas do Citoesqueleto/metabolismo , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Proteínas do Citoesqueleto/genética , Embrião de Mamíferos , Expressão Gênica/fisiologia , Hibridização In Situ/métodos , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
20.
Neurosci Lett ; 400(3): 218-23, 2006 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-16530331

RESUMO

Rho family small GTPases are key regulators for neuronal morphogenesis including dendritogenesis. We recently have shown that Rnd1, a member of the Rho family, is highly expressed in brain during the synaptogenic stage and is involved in dendritic spine formation. However, the mechanism by which Rnd1 regulates dendritic development including spine morphogenesis remains unknown. Here we report that Rnd1, a member of the Rho family, plays a critical role in neuronal activity-dependent dendritic development in hippocampal neurons. Overexpression of Rnd1 promoted dendritic growth and branching in cultured hippocampal neurons. On the other hand, suppression of endogenous Rnd1 expression by RNA interference significantly inhibited neuronal activity-dependent dendritic development and this inhibitory effect was canceled by inhibition of RhoA effector ROCK. In addition, knockdown of Rnd1 also abolished dendritic development promoted by treatment with brain-derived neurotrophic factor in hippocampal neurons. Our findings demonstrate that Rnd1 is involved in signaling pathways of neuronal activity-dependent dendritic development.


Assuntos
Potenciais de Ação/fisiologia , Dendritos/fisiologia , Dendritos/ultraestrutura , Hipocampo/embriologia , Hipocampo/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Morfogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA