Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant J ; 66(4): 591-602, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21284755

RESUMO

Aromatic L-amino acid decarboxylases (AADCs) are key enzymes operating at the interface between primary and secondary metabolism. The Arabidopsis thaliana genome contains two genes, At2g20340 and At4g28680, encoding pyridoxal 5'-phosphate-dependent AADCs with high homology to the recently identified Petunia hybrida phenylacetaldehyde synthase involved in floral scent production. The At4g28680 gene product was recently biochemically characterized as an L-tyrosine decarboxylase (AtTYDC), whereas the function of the other gene product remains unknown. The biochemical and functional characterization of the At2g20340 gene product revealed that it is an aromatic aldehyde synthase (AtAAS), which catalyzes the conversion of phenylalanine and 3,4-dihydroxy-L-phenylalanine to phenylacetaldehyde and dopaldehyde, respectively. AtAAS knock-down and transgenic AtAAS RNA interference (RNAi) lines show significant reduction in phenylacetaldehyde levels and an increase in phenylalanine, indicating that AtAAS is responsible for phenylacetaldehyde formation in planta. In A. thaliana ecotype Columbia (Col-0), AtAAS expression was highest in leaves, and was induced by methyl jasmonate treatment and wounding. Pieris rapae larvae feeding on Col-0 leaves resulted in increased phenylacetaldehyde emission, suggesting that the emitted aldehyde has a defensive activity against attacking herbivores. In the ecotypes Sei-0 and Di-G, which emit phenylacetaldehyde as a predominant flower volatile, the highest expression of AtAAS was found in flowers and RNAi AtAAS silencing led to a reduction of phenylacetaldehyde formation in this organ. In contrast to ecotype Col-0, no phenylacetaldehyde accumulation was observed in Sei-0 upon wounding, suggesting that AtAAS and subsequently phenylacetaldehyde contribute to pollinator attraction in this ecotype.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Folhas de Planta/metabolismo , Tirosina Descarboxilase/metabolismo , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetatos/farmacologia , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Descarboxilases de Aminoácido-L-Aromático/genética , Ciclopentanos/farmacologia , Comportamento Alimentar , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Insetos/patogenicidade , Larva/patogenicidade , Odorantes , Oxilipinas/farmacologia , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/parasitologia , Pólen/genética , Pólen/metabolismo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Tirosina Descarboxilase/genética , Compostos Orgânicos Voláteis/metabolismo , Volatilização
2.
J Exp Bot ; 62(15): 5367-84, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21841177

RESUMO

Label-free LC-MS/MS-based shot-gun proteomics was used to quantify the differential protein synthesis and metabolite profiling in order to assess metabolic changes during the development of citrus fruits. Our results suggested the occurrence of a metabolic change during citrus fruit maturation, where the organic acid and amino acid accumulation seen during the early stages of development shifted into sugar synthesis during the later stage of citrus fruit development. The expression of invertases remained unchanged, while an invertase inhibitor was up-regulated towards maturation. The increased expression of sucrose-phosphate synthase and sucrose-6-phosphate phosphatase and the rapid sugar accumulation suggest that sucrose is also being synthesized in citrus juice sac cells during the later stage of fruit development.


Assuntos
Citrus/crescimento & desenvolvimento , Citrus/metabolismo , Frutas/metabolismo , Proteômica/métodos , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem
3.
Plant Biotechnol J ; 6(4): 403-15, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18346094

RESUMO

The phenylpropanoid pathway gives rise to metabolites that determine floral colour and fragrance. These metabolites are one of the main means used by plants to attract pollinators, thereby ensuring plant survival. A lack of knowledge about factors regulating scent production has prevented the successful enhancement of volatile phenylpropanoid production in flowers. In this study, the Production of Anthocyanin Pigment1 (Pap1) Myb transcription factor from Arabidopsis thaliana, known to regulate the production of non-volatile phenylpropanoids, including anthocyanins, was stably introduced into Petunia hybrida. In addition to an increase in pigmentation, Pap1-transgenic petunia flowers demonstrated an increase of up to tenfold in the production of volatile phenylpropanoid/benzenoid compounds. The dramatic increase in volatile production corresponded to the native nocturnal rhythms of volatile production in petunia. The application of phenylalanine to Pap1-transgenic flowers led to an increase in the otherwise negligible levels of volatiles emitted during the day to nocturnal levels. On the basis of gene expression profiling and the levels of pathway intermediates, it is proposed that both increased metabolic flux and transcriptional activation of scent and colour genes underlie the enhancement of petunia flower colour and scent production by Pap1. The co-ordinated regulation of metabolic steps within or between pathways involved in vital plant functions, as shown here for two showy traits determining plant-pollinator interactions, provides a clear advantage for plant survival. The use of a regulatory factor that activates scent production creates a new biotechnological strategy for the metabolic architecture of fragrance, leading to the creation of novel genetic variability for breeding purposes.


Assuntos
Antocianinas/metabolismo , Cor , Flores/metabolismo , Odorantes , Petunia/metabolismo , Fatores de Transcrição/metabolismo , Antocianinas/genética , Proteínas de Arabidopsis , Ritmo Circadiano , Flores/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Associadas a Pancreatite , Petunia/genética , Fenilalanina , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
4.
J Agric Food Chem ; 64(20): 4114-20, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27133457

RESUMO

Demand for aromatic rice varieties (e.g., Basmati) is increasing in the US. Aromatic varieties typically have elevated levels of the aroma compound 2-acetyl-1-pyrroline (2AP). Due to its very low aroma threshold, analysis of 2AP provides a useful screening tool for rice breeders. Methods for 2AP analysis in rice should quantitate 2AP at or below sensory threshold level, avoid artifactual 2AP generation, and be able to analyze single rice kernels in cases where only small sample quantities are available (e.g., breeding trials). We combined headspace solid phase microextraction with gas chromatography tandem mass spectrometry (HS-SPME-GC-MS/MS) for analysis of 2AP, using an extraction temperature of 40 °C and a stable isotopologue as internal standard. 2AP calibrations were linear between the concentrations of 53 and 5380 pg/g, with detection limits below the sensory threshold of 2AP. Forty-eight aromatic and nonaromatic, milled rice samples from three harvest years were screened with the method for their 2AP content, and overall reproducibility, observed for all samples, ranged from 5% for experimental aromatic lines to 33% for nonaromatic lines.


Assuntos
Aromatizantes/análise , Aromatizantes/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Oryza/química , Pirróis/análise , Pirróis/isolamento & purificação , Sementes/química , Sensibilidade e Especificidade , Microextração em Fase Sólida , Espectrometria de Massas em Tandem/métodos
5.
J Agric Food Chem ; 62(22): 4988-5004, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24844943

RESUMO

'Comice' is among the pear varieties most difficult to ripen after harvest. Ethylene, cold temperature, and intermediate (10 °C) temperature conditioning have been successfully used to stimulate the ability of 'Comice' pears to ripen. However, the sensory quality of pears stimulated to ripen by different conditioning treatments has not been evaluated. In this study, a descriptive sensory analysis of 'Comice' pears conditioned to soften to 27, 18, and 9 N firmness with ethylene exposure for 3 or 1 days, storage at 0 °C for 25 or 15 days, or storage at 10 °C for 10 days was performed. Sensory attributes were then related to changes in chemical composition, including volatile components, water-soluble polyuronides, soluble solids content (SSC), and titratable acidity (TA). The sensory profile of fruit conditioned with ethylene was predominant in fibrous texture and low in fruity and pear aroma. Fruit conditioned at 0 °C was described as crunchy at 27 and 18 N firmness and became juicy at 9 N firmness. Fruit conditioned at 0 °C produced the highest quantity of alcohols and fewer esters than fruit conditioned at 10 °C, and they had higher fruity and pear aroma than fruit conditioned with ethylene, but lower than fruit conditioned at 10 °C. Fruit held at 10 °C were predominant in fruity and pear aroma and had the highest concentration of esters. Water-soluble polyuronides were strongly, positively correlated (r > 0.9) with sensory attributes generally associated with ripeness, including juiciness, butteriness, and sweetness and negatively correlated (r > -0.9) with sensory attributes generally associated with the unripe stage, such as firmness and crunchiness. However, water-soluble polyuronides were not significantly different among conditioning treatments. Sensory sweetness was not significantly correlated with SSC, but TA and SSC/TA were significantly correlated with sensory tartness. However, there were no significant differences among the conditioning treatments in sweet or sour taste perception when the fruit fully softened. The results indicate that the various methods of conditioning 'Comice' pear fruits for ripening had different effects on their sensory and chemical properties that may influence their sensory quality.


Assuntos
Etilenos/farmacologia , Frutas/química , Pyrus/efeitos dos fármacos , Paladar , Temperatura Baixa , Frutas/efeitos dos fármacos , Humanos , Pyrus/química
6.
J Plant Physiol ; 169(17): 1737-46, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22840325

RESUMO

Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions.


Assuntos
Ocimum basilicum/fisiologia , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Água/metabolismo , Ocimum basilicum/genética , Ocimum basilicum/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Estresse Fisiológico
7.
PLoS One ; 3(4): e1904, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18382679

RESUMO

BACKGROUND: Many inducible plant-defense responses are activated by jasmonates (JAs), C(6)-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C(6)-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C(6)-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae), an insect herbivore (leafminers: Liriomyza trifolii), and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola). We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani), a natural enemy of aphids. PRINCIPAL FINDINGS: This study conclusively establishes that jasmonates and C(6)-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C(6)-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C(6)-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic (plant-herbivore-natural enemy) interactions. SIGNIFICANCE: The data suggest that jasmonates and hexenyl acetate play distinct roles in mediating direct and indirect plant-defense responses. The potential advantage of this "division of labor" is to ensure the most effective defense strategy that minimizes incurred damages at a reduced metabolic cost.


Assuntos
Aldeídos/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Doenças das Plantas , Aldeído Liases/metabolismo , Animais , Afídeos , Sistema Enzimático do Citocromo P-450/metabolismo , Genótipo , Indóis/química , Oxirredutases Intramoleculares/metabolismo , Modelos Biológicos , Plantas , Transdução de Sinais , Especificidade da Espécie , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA