Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Vet Pathol ; 55(3): 366-373, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29433400

RESUMO

There is a clear link between defects in autophagy and the development of autoimmune and chronic inflammatory diseases, raising interest in better understanding the roles of autophagy within the immune system. In addition, autophagy has been implicated in the immune response to infection by pathogenic microbes. As such, there are efforts currently underway to develop modulators of autophagy as a therapeutic strategy for the treatment of the autoimmune, inflammatory, and infectious diseases. In this review, we discuss the numerous roles for autophagy in immunity and how these activities are linked to disease. We highlight how autophagy affects pathogen clearance, phagocytosis, pattern recognition receptor signaling, inflammation, antigen presentation, cell death, and immune cell development and maintenance. With these diverse and extensive immune-related functions for autophagy in mind, we finish by considering the possible implications of targeting autophagy as a therapeutic strategy.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Regulação da Expressão Gênica/imunologia , Imunidade Celular/fisiologia , Animais , Apoptose/fisiologia , Proteínas Relacionadas à Autofagia/genética , Transdução de Sinais/imunologia
2.
Langmuir ; 32(45): 11946-11957, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27794618

RESUMO

The relationship between the structure of sequence-defined peptoid polymers and their ability to assemble into well-defined nanostructures is important to the creation of new bioinspired platforms with sophisticated functionality. Here, the hydrophobic N-(2-phenylethyl)glycine (Npe) monomers of the standard nanosheet-forming peptoid sequence were modified in an effort to (1) produce nanosheets from relatively short peptoids, (2) inhibit the aggregation of peptoids in bulk solution, (3) increase nanosheet stability by promoting packing interactions within the hydrophobic core, and (4) produce nanosheets with a nonaromatic hydrophobic core. Fluorescence and optical microscopy of individual nanosheets reveal that certain modifications to the hydrophobic core were well tolerated, whereas others resulted in instability or aggregation or prevented assembly. Importantly, we demonstrate that substitution at the meta and para positions of the Npe aromatic ring are well tolerated, enabling significant opportunities to tune the functional properties of peptoid nanosheets. We also found that N-aryl glycine monomers inhibit nanosheet formation, whereas branched aliphatic monomers have the ability to form nanosheets. An analysis of the crystal structures of several N,N'-disubstituted diketopiperazines (DKPs), a simple model system, revealed that the preferred solid-state packing arrangement of the hydrophobic groups can directly inform the assembly of stable peptoid nanosheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA