Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Amino Acids ; 54(1): 85-98, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34842969

RESUMO

Dopamine is an important neurotransmitter that regulates numerous essential functions, including cognition and voluntary movement. As such, it serves as an important scaffold for synthesis of novel analogues as part of drug development effort to obtain drugs for treatment of neurodegenerative diseases, such as Parkinson's disease. To that end, similarity search of the ZINC database based on two known dopamine-1 receptor (D1R) agonists, dihydrexidine (DHX) and SKF 38393, respectively, was used to predict novel chemical entities with potential binding to D1R. Three compounds that showed the highest similarity index were selected for synthesis and bioactivity profiling. All main synthesis products as well as the isolated intermediates, were properly characterized. The physico-chemical analyses were performed using HRESIMS, GC/MS, LC/MS with UV-Vis detection, and FTIR, 1H NMR and 13C NMR spectroscopy. Binding to D1 and D2 receptors and inhibition of dopamine reuptake via dopamine transporter were measured for the synthesized analogues of DHX and SKF 38393.


Assuntos
Catecolaminas , Receptores de Dopamina D1 , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Fenantridinas/farmacologia , Receptores de Dopamina D1/metabolismo
2.
Biomolecules ; 13(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759815

RESUMO

The high structural similarity, especially in transmembrane regions, of dopamine, norepinephrine, and serotonin transporters, as well as the lack of all crystal structures of human isoforms, make the specific targeting of individual transporters rather challenging. Ligand design itself is also rather limited, as many chemists, fully aware of the synthetic and analytical challenges, tend to modify lead compounds in a way that reduces the number of chiral centers and hence limits the potential chemical space of synthetic ligands. We have previously shown that increasing molecular complexity by introducing additional chiral centers ultimately leads to more selective and potent dopamine reuptake inhibitors. Herein, we significantly extend our structure-activity relationship of dopamine transporter-selective ligands and further demonstrate how stereoisomers of defined absolute configuration may fine-tune and direct the activity towards distinct targets. From the pool of active compounds, using the examples of stereoisomers 7h and 8h, we further showcase how in vitro activity significantly differs in in vivo drug efficacy experiments, calling for proper validation of individual stereoisomers in animal studies. Furthermore, by generating a large library of compounds with defined absolute configurations, we lay the groundwork for computational chemists to further optimize and rationally design specific monoamine transporter reuptake inhibitors.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Animais , Humanos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transporte Biológico , Relação Estrutura-Atividade , Norepinefrina , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA