Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Res ; 82(2): 185-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25731191

RESUMO

Laboratory somatic cell count (LSCC) records are usually recorded monthly and provide an important information source for breeding and herd management. Daily milk viscosity detection in composite milking (expressed as drain time) with an automated on-line California Mastitis Test (CMT) could serve immediately as an early predictor of udder diseases and might be used as a selection criterion to improve udder health. The aim of the present study was to clarify the relationship between the well-established LSCS and the new trait,'drain time', and to estimate their correlations to important production traits. Data were recorded on the dairy research farm Karkendamm in Germany. Viscosity sensors were installed on every fourth milking stall in the rotary parlour to measure daily drain time records. Weekly LSCC and milk composition data were available. Two data sets were created containing records of 187,692 milkings from 320 cows (D1) and 25,887 drain time records from 311 cows (D2). Different fixed effect models, describing the log-transformed drain time (logDT), were fitted to achieve applicable models for further analysis. Lactation curves were modelled with standard parametric functions (Ali and Schaeffer, Legendre polynomials of second and third degree) of days in milk (DIM). Random regression models were further applied to estimate the correlations between cow effects between logDT and LSCS with further important production traits. LogDT and LSCS were strongest correlated in mid-lactation (r = 0.78). Correlations between logDT and production traits were low to medium. Highest correlations were reached in late lactation between logDT and milk yield (r = -0.31), between logDT and protein content (r = 0.30) and in early as well as in late lactation between logDT and lactose content (r = -0.28). The results of the present study show that the drain time could be used as a new trait for daily mastitis control.


Assuntos
Lactação/fisiologia , Mastite Bovina/diagnóstico , Leite/química , Animais , Automação , Bovinos , Feminino , Leite/citologia , Sistemas On-Line , Reologia
2.
Springerplus ; 3: 760, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25674485

RESUMO

The aim of the paper was to estimate the accuracy of the metrology of an installed indirect on-line sensor system based on the automated California Mastitis Test (CMT) with focus on the prior established device-dependent variation. A sensor calibration was implemented. Therefore, seven sensors were tested with similar trials on the dairy research farm Karkendamm (Germany) on two days in July 2011 and January 2012. Thereby, 18 mixed milk samples from serial dilutions were fourfold recorded at every sensor. For the validation, independent sensor records with corresponding lab somatic cell score records (LSCS) in the period between both trials were used (n = 1,357). From these records for each sensor a polynomial regression function was calculated. The predicted SCS (PSCS) was obtained for each sensor with the previously determined regression coefficients. Pearson correlation coefficients between PSCS and LSCS were established for each sensor and ranged between r = 0.57 and r = 0.67. Comparing the results with the correlation coefficients between the on-line SCS (OSCS) and the LSCS (r = 0.20 to 0.57) for every sensor, the calibration showed the tendency to improve the installed sensor system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA