RESUMO
N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development.
Assuntos
Adenosina/química , Hematopoese/genética , Hematopoese/imunologia , Imunidade Inata/genética , RNA de Cadeia Dupla/metabolismo , Animais , Biomarcadores , Transtornos da Insuficiência da Medula Óssea/etiologia , Transtornos da Insuficiência da Medula Óssea/metabolismo , Transtornos da Insuficiência da Medula Óssea/patologia , Diferenciação Celular/genética , Modelos Animais de Doenças , Epigênese Genética , Expressão Gênica , Células-Tronco Hematopoéticas , Imunofenotipagem , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , RNA de Cadeia Dupla/químicaRESUMO
The recent discovery of N6-methyladenine (N6-mA) in mammalian genomes suggests that it may serve as an epigenetic regulatory mechanism1. However, the biological role of N6-mA and the molecular pathways that exert its function remain unclear. Here we show that N6-mA has a key role in changing the epigenetic landscape during cell fate transitions in early development. We found that N6-mA is upregulated during the development of mouse trophoblast stem cells, specifically at regions of stress-induced DNA double helix destabilization (SIDD)2-4. Regions of SIDD are conducive to topological stress-induced unpairing of the double helix and have critical roles in organizing large-scale chromatin structures3,5,6. We show that the presence of N6-mA reduces the in vitro interactions by more than 500-fold between SIDD and SATB1, a crucial chromatin organizer that interacts with SIDD regions. Deposition of N6-mA also antagonizes SATB1 function in vivo by preventing its binding to chromatin. Concordantly, N6-mA functions at the boundaries between euchromatin and heterochromatin to restrict the spread of euchromatin. Repression of SIDD-SATB1 interactions mediated by N6-mA is essential for gene regulation during trophoblast development in cell culture models and in vivo. Overall, our findings demonstrate an unexpected molecular mechanism for N6-mA function via SATB1, and reveal connections between DNA modification, DNA secondary structures and large chromatin domains in early embryonic development.
Assuntos
Adenina/análogos & derivados , DNA/química , DNA/metabolismo , Desenvolvimento Embrionário , Proteínas de Ligação à Região de Interação com a Matriz/antagonistas & inibidores , Adenina/metabolismo , Animais , Pareamento de Bases , Desenvolvimento Embrionário/genética , Eucromatina/genética , Eucromatina/metabolismo , Feminino , Humanos , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Células-Tronco/citologia , Células-Tronco/metabolismo , Termodinâmica , Trofoblastos/citologiaRESUMO
N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.
Assuntos
Leucemia , RNA , Animais , Humanos , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Metabolismo Energético , Células-Tronco Hematopoéticas/metabolismo , RNA/metabolismo , Estabilidade de RNA/genéticaRESUMO
During the COVID-19 pandemic, hematopoietic stem cell transplant (HSCT) recipients faced an elevated mortality rate from SARS-CoV-2 infection, ranging between 10-40%. The SARS-CoV-2 mRNA vaccines are important tools in preventing severe disease, yet their efficacy in the post-transplant setting remains unclear, especially in patients subjected to myeloablative chemotherapy and immunosuppression. We evaluated the humoral and adaptive immune responses to the SARS-CoV-2 mRNA vaccination series in 42 HSCT recipients and 5 healthy controls. Peripheral blood mononuclear nuclear cells and serum were prospectively collected before and after each dose of the SARS-CoV-2 vaccine. Post-vaccination responses were assessed by measuring anti-spike IgG and nucleocapsid titers, and antigen specific T cell activity, before and after vaccination. In order to examine mechanisms behind a lack of response, pre-and post-vaccine samples were selected based on humoral and cellular responses for single-cell RNA sequencing with TCR and BCR sequencing. Our observations revealed that while all participants eventually mounted a humoral response, transplant recipients had defects in memory T cell populations that were associated with an absence of T cell response, some of which could be detected pre-vaccination.
RESUMO
Long non-coding RNAs (lncRNAs) are important regulators of development. In this issue of Developmental Cell, Wilson et al. utilize pluripotent stem cell models to demonstrate that a primate lncRNA, BANCR, is primarily expressed in fetal cardiomyocytes and promotes cell migration.
Assuntos
Retrovirus Endógenos , RNA Longo não Codificante , Animais , Movimento Celular , Humanos , Miócitos Cardíacos , Primatas , RNA Longo não Codificante/genéticaRESUMO
N6-methyladenine (N6-mA) of DNA is an emerging epigenetic mark in mammalian genome. Levels of N6-mA undergo drastic fluctuation during early embryogenesis, indicative of active regulation. Here we show that the 2-oxoglutarate-dependent oxygenase ALKBH1 functions as a nuclear eraser of N6-mA in unpairing regions (e.g., SIDD, Stress-Induced DNA Double Helix Destabilization regions) of mammalian genomes. Enzymatic profiling studies revealed that ALKBH1 prefers bubbled or bulged DNAs as substrate, instead of single-stranded (ss-) or double-stranded (ds-) DNAs. Structural studies of ALKBH1 revealed an unexpected "stretch-out" conformation of its "Flip1" motif, a conserved element that usually bends over catalytic center to facilitate substrate base flipping in other DNA demethylases. Thus, lack of a bending "Flip1" explains the observed preference of ALKBH1 for unpairing substrates, in which the flipped N6-mA is primed for catalysis. Co-crystal structural studies of ALKBH1 bound to a 21-mer bulged DNA explained the need of both flanking duplexes and a flipped base for recognition and catalysis. Key elements (e.g., an ALKBH1-specific α1 helix) as well as residues contributing to structural integrity and catalytic activity were validated by structure-based mutagenesis studies. Furthermore, ssDNA-seq and DIP-seq analyses revealed significant co-occurrence of base unpairing regions with N6-mA in mouse genome. Collectively, our biochemical, structural and genomic studies suggest that ALKBH1 is an important DNA demethylase that regulates genome N6-mA turnover of unpairing regions associated with dynamic chromosome regulation.
Assuntos
Adenosina/análogos & derivados , Homólogo AlkB 1 da Histona H2a Dioxigenase , Desmetilação do DNA , DNA/química , Homólogo AlkB 1 da Histona H2a Dioxigenase/química , Homólogo AlkB 1 da Histona H2a Dioxigenase/fisiologia , Animais , Células Cultivadas , Células-Tronco Embrionárias , Camundongos , Estrutura Molecular , Ligação ProteicaRESUMO
Cancer cells and embryonic tissues share a number of cellular and molecular properties, suggesting that induced pluripotent stem cells (iPSCs) may be harnessed to elicit anti-tumor responses in cancer vaccines. RNA sequencing revealed that human and murine iPSCs express tumor-associated antigens, and we show here a proof of principle for using irradiated iPSCs in autologous anti-tumor vaccines. In a prophylactic setting, iPSC vaccines prevent tumor growth in syngeneic murine breast cancer, mesothelioma, and melanoma models. As an adjuvant, the iPSC vaccine inhibited melanoma recurrence at the resection site and reduced metastatic tumor load, which was associated with fewer Th17 cells and increased CD11b+GR1hi myeloid cells. Adoptive transfer of T cells isolated from vaccine-treated tumor-bearing mice inhibited tumor growth in unvaccinated recipients, indicating that the iPSC vaccine promotes an antigen-specific anti-tumor T cell response. Our data suggest an easy, generalizable strategy for multiple types of cancer that could prove highly valuable in clinical immunotherapy.
Assuntos
Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Melanoma/imunologia , Mesotelioma/imunologia , Animais , Neoplasias da Mama/terapia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Melanoma/terapia , Mesotelioma/terapia , CamundongosRESUMO
There is growing interest in using embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an "allogenized" mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.
Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Imunidade Inata/imunologia , Células-Tronco Pluripotentes/metabolismo , Condicionamento Pré-Transplante/métodos , Animais , Modelos Animais de Doenças , Rejeição de Enxerto , Humanos , CamundongosRESUMO
This unit describes protocols for evaluating the pluripotency of embryonic and induced pluripotent stem cells using a teratoma formation assay. Cells are prepared for injection and transplanted into immunodeficient mice at the gastrocnemius muscle, a site well suited for teratoma growth and surgical access. Teratomas that form from the cell transplants are explanted, fixed in paraformaldehyde, and embedded in paraffin. These preserved samples are sectioned, stained, and analyzed. Pluripotency of a cell line is confirmed by whether the teratoma contains tissues derived from each of the embryonic germ layers: endoderm, mesoderm, and ectoderm. Alternatively, explanted and fixed teratomas can be cryopreserved for immunohistochemistry, which allows for more detailed identification of specific tissue types present in the samples.